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Fundamental aspects of non-equilibrium statistical physics

Linear Irreversible Thermodynamics

Linear response theory: Summarized via universal Onsager’s
reciprocity relations, universal Fluctuation-dissipation relations.
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What about far from equilibrium??



Fluctuation Relations: Microscopic statement of second law
O Charge Transport
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O Close to equilibrium —p Standard Linear response results

O Response coefficients are related beyond linear response regime
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The steady state fluctuation symmetry ensures that
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Experimental verification of quantum heat exchange fluctuation relation
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Thermodynamic Uncertainty Relation (TUR)

Trade-off between dissipation (entropy production) and precision (noise)

For two-terminal single-affinity system (Markov Process)
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Equality in the linear response regime (Gaussian distribution)
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Relation to fluctuation symmetry?
Quantum Effects?

B. K. Agarwalla, D. Segal PRB (2018)




Thermodynamic Uncertainty Relation (TUR)

Cost - precision tradeoff
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Thermodynamic Uncertainty Relation (TUR): Charge Transport
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Valid for both classical and quantum systems



Non-interacting Charge Transport (Scattering Theory)

Model: Tight-binding chain connected to two fermionic leads
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Charge Current: (Landauer Formula)
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Current Fluctuation:
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Non-interacting Charge Transport
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; Can switch sign
:1. Structure of the transmission function (tunnelling processes),
:2. External conditions (temperature)

2 32 2
Low transmission, T(F) < 1 ;‘5V<<<J >>> — 94! (j/ valid
J .
oG L BV
Constant Transmission T(E) = 7 BV ) =2+ IQWII,(}lT(l — )
valid

Resonance tunneling condition

Violation condition: E - % T, = e %T”(E)
7.~ 3 T




I
3 FR I'y, FR 1—WL FR
()
€d

A. single quantum dot B. serial double quantumdot  C. side-coupled double quantum dot
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Results: Single Quantum Dot
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Results: Double Quantum Dot
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Results: Double Quantum Dot
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TUR: <]> = 24 Cneq + O(V4) T

Table: Thermodynamic uncertainty relation for charge transport in quantum dot setups
hybridization ' single dot (A) and side-coupled (C) models serial double dot model (B)

weak valid I lIlV‘dll(! I
(Markovian master equation for population) (non-Markovian population dynamics)
strong invalid | valid

(high-order electron tunneling processes) (low transmission function)




Summary:

AN

O Thermodynamic uncertainty relation:

Violation for quantum systems— Depending on the nature of transmission
function and external conditions

O What is the bound 1in the Quantum domain?



Thermodynamics of precision in quantum non equilibrium steady states
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Autonomous engines operating at the nano-scale can be prone to deleterious fluctuations in the heat and par-
ticle currents which increase, for fixed power output, the more reversible the operation regime is. This funda-
mental trade-off between current fluctuations and entropy production forms the basis of the recently formulated
thermodynamic uncertainty relations (TURs). However, these relations have so far only been derived for classi-
cal Markovian systems and can be violated in the quantum regime. In this paper we show that the geometry of
quantum non-equilibrium steady-states alone, already directly implies the existence of a TUR, but with a looser
bound. The geometrical nature of this result makes it extremely general, establishing a fundamental limit for the
thermodynamics of precision. Our proof is based on the McLennan-Zubarev ensemble, which provides an exact
description of non-equilibrium steady-states. We first prove that the entropy production of this ensemble can be
expressed as a quantum relative entropy. The TURs are then shown to be a direct consequence of the quantum
Cramer-Rao bound, a fundamental result from parameter estimation theory. By combining techniques from
many-body physics and information sciences, our approach also helps to shed light on the delicate relationship
between quantum effects and current fluctuations in autonomous machines, where new general bound on the
power output are found and discussed.
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