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Objective

% To study non equilibrium dynamics of many body system :
Dynamics of spin system after a quench has revealed many
interesting features.

% We consider an integrable spin system, namely transverse Ising chain
and study the return probability starting from a generic initial state

% The return probability shows non-analytic behaviour indicating
“Dynamical Quantum Phase Transition”

Heyl, Rep. Prog. Phys. 81, 054001 (2018), arXiv:1709.07461
Heyl, arXiv:1811.02575
Zvyagin, arXiv:1701.08851



Scheme

Construct a generic initial state on a spin chain
involving even and odd parity states

Study its time evolution under Transverse Ising Hamiltonian
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Loschmidt Echo / Amplitude : £ = [{W(0)|W(t))|?
Measure of return probability, decoherence due to dynamics
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Eigenstates of Transverse Ising Model
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1 — _ Z s¥sk, — T Z 57 Quantum Phase Trans1t10n.at =1
i=1 =1 M, M, are non-analytic
s¥, szare Pauli spin matrices Pfeuty (1970), Lieb, Schultz, Mattis (1961)

H=>, Hi, Hi-scommute (0 < k < ). Eigenstates :
—Ak(r), ]GSk> — I'COS(gk’].k]._k> — sin Qk\OkO_k> #

—I—)\k(r), ‘ES/{> — /sIn 9/(‘1/(1_/(> -+ COS (9/(’0/(0_/(> ¢ Even parlty
0, 0,1 4) 4
0. 1,0_) | Odd parity

sin k
[+ cosk + 2+ 1+ 2l cos k

A :2\/F2—|—1—|—2Fcosk, tan @, =

Hamiltonian evolution conserves parity.
The odd parity states 101>, | 10> are often ignored.
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has been studied for quench of Hamiltonian of integrable systems
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Transverse Ising model : global quench of external field from ' to I

r(t) = (—=1/N)log L = — /OW dk log [1 — sin® (Akt/2) sin*(¢«)]

where A\, is energy for field [, and ¢, is some function of ['; and I',
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At some k = k., sin(¢x) = 1.
At that k., for some t = t,, sin(At/2) =1
= Log term diverges, and singularity appears

Onlywhen [1<1,T>,>10RTI;>1T>,<1

Singularity indicates DQPT
(Dynamical Quantum Phase Transition)
Some measurable quantities are non-analytic
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Initial State
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Quench = Initial state is the ground state for some specific external field
We use a generic state as the initial state
and study the dynamics under Transverse Ising Hamiltonian
% J

Generic pure state |V(t =0)) = ®|W,(t = 0)) with
Wi(t = 0)) = 1)k + Bk|00)k + 7k[10) ik + 74[01)«

Normalisation needs |cvi|? + |Bk|? + 2|v4|* = 1 for all k

Measure of even parity £ = |ay|? + |Bk|? and odd parity O = 2|,/

We explore the subspace :
(a, Bk, vk) = real, independent of k and ay, = [y

Note : For ground state O =0, ay = icosby, Bx = —sin by
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We start with

Wt =0)) = @i [/ (111)k + 00)6) + /255 ([01)x + [10)4)
Calculate |W(t)) = exp (—iHt) |W(0)), Return Prob : £ = [(V(0)|W(t))|?
Rate constant r(t) = —(1/N)log £L = — [ dk log[l — £ + & cos (A«t)]



We start with

W(t = 0)) @k[\f(mkﬂoo )+ /555 (101)k + [10)4)]

Calculate |W(t)) = exp (—iHt) |W(0)), Return Prob : £ = [(V(0)|W(t))|?
Rate constant r(t) = —(1/N)log £L = — [ dk log[l — £ + & cos (A«t)]

€=0.5 I'=0.5
r(t) shows kinks
for0.5 <€ < 1.0
| NOT for £ < O
€=0.49 for ALL T
/>



r(t) = — /OW dk log[l — & 4 £ cos (Axt)]

At the kinks 1 — & + Ecos(Axt) =0 with k =0o0r k=
The curve is vertical at the left or right of the kink respectively



Appearance of
Dynamical Quantum Phase Transition (DQPT)

N N
Hamiltonian H(r) = — Z 5j<5f<+1 — I Z sz
j=1 J=1

Quench Protocol :

Start from the ground state of H(I'1) and evolve under H(I3)

Kinks (DQPT) appear when quenched through the critical point, that is,
1 and [, are on two sides of the critical point (ferro-para or para-ferro
quench). Only even parity states considered

This work :

Start from a generic state

Kinks (DQPT) appear when weightage of even parity is larger than the

weightage of odd parity (driven by imbalance of parity)
For all values of T.



Earlier work for equal wightage of
even and odd parity

W(t=0)) =@ [ak|11)k + Bk|00)k + vk|10)k + Vk[01)]
Weightage of even parity and odd parity are equal

£ =0 |oul® + Bl = 2|l

® Can be handled analytically, for calculation of transverse
magnetisation

® The initial state has spatially inhomogeneous transverse
magnetisation. (This happens for nonzero yx only.)
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Main Results : (for €=0, lau 12+ [P 12=2 |y 12)

* Whatever be the strength of the field, the magnetisation of the
system does not become homogeneous even after infinite time

M
at sitzen : HN=0.8
' t/N=0.4 \

0.1F
| L= oo
02k
-0.3F t:O
A5 04 06 03 1

n/N
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e At each site, the transverse magnetisation decays in the form

of damped oscillation.

*The frequency of oscillation varies linearly with field for
ferromagnetic phase and remains constant in paramagnetic
state. The envelope of oscillation decays algebraically with

exponent 0.5

0.1

M —— I'=05 20
n algebraic decay for I'=0.5
Z o Fg= 2 y = 15
OF algebraic decay for I'=2
- \/m_/\/\/\A/\/\/\ 10
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* The local magnetisation after infinite time varies differently with
field in ordered and disordered phases.

at middle point i
of the sample -0.04
-0.08 -
-0.12
-0.16 |-

_02 ] ] | ] | ] |
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Summary and Open Questions

*\We investisgate the singularities in the Loschmidt echo starting
from a generic state. The singularities are found to be driven by
the difference of weightage of even parity and odd parity states
(for €+ 0)

* How does the non-local observables (say, the longitudinal
magnetisation) behave? Do they bear a signature of dynamical
transition?

* How can one realise experimentally a generic state, like the
one considered here?
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Thank you for your attention



