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Objective

★ To study non equilibrium dynamics of many body system : 
Dynamics of spin system after a quench has revealed many 
interesting features.

★We consider an integrable spin system, namely transverse Ising chain 
and study the return probability starting from a generic initial state 

★ The return probability shows non-analytic behaviour indicating 
“Dynamical Quantum Phase Transition”
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Construct a generic initial state on a spin chain
involving even and odd parity states

Loschmidt Echo / Amplitude : L ⌘ |h (0)| (t)i|2

Measure of return probability, decoherence due to quench

Construct a generic initial state on a spin chain
involving even and odd parity states

Study its time evolution under Transverse Ising Hamiltonian
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Eigenstates of Transverse Ising Model
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Pfeuty (1970), Lieb, Schultz, Mattis (1961)  sx, sz are Pauli spin matrices

H = �

NX

j=1

sxj s
x
j+1 � �

NX

j=1

szj (J = 1) X , Z

Ising spins (sz) + +���+� s+j , s
�

j 1  j  N

+ Jordan-Wigner transformation

Fermions 1 1 0 0 0 1 0 aj , a
†

j 1  j  N

+ Fourier transformation

Fermions 1 1 0 0 0 1 0 ak , a
†

k � ⇡ < k  ⇡

+ Bogoliubov transformation

H =
P

k Hk , Hk -s commute (0  k  ⇡)

Eigenstates : ⌥�(�, k) Hk = �(�, k)(2⌘†k⌘k � 1)

Quantum Phase Transition at Γ=1
Mx  Mz  are non-analytic 

Hamiltonian evolution conserves parity.
The odd parity states |01>, |10> are often ignored.

H =
P

k Hk , Hk -s commute (0  k  ⇡). Eigenstates :

��k(�), |GSki = i cos ✓k |1k1�ki � sin ✓k |0k0�ki

+�k(�), |ESki = i sin ✓k |1k1�ki+ cos ✓k |0k0�ki

0, |0k1�ki

0, |1k0�ki

�k = 2
p

�2 + 1 + 2� cos k , tan ✓k =
sin k

�+ cos k +
p
�2 + 1 + 2� cos k

Even parity

Odd parity
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Return Probability : L ⌘ |h (0)| (t)i|2
has been studied for quench of Hamiltonian of integrable systems
Can be measured experimentally

Transverse Ising model : global quench of external field from �1 to �2

r(t) = �
Z ⇡

0
dk log

⇥
1� sin2 (�kt/2) sin

2(�k)
⇤

where �k is energy for field �2 and �k is some function of �1 and �2

At some k = kc , sin(�k) = 1.
At that kc , for some t = tc , sin (�kt/2) = 1
) Log term diverges, and singularity appears

Only when �1 < 1, �2 > 1 OR �1 > 1, �2 < 1

Singularity indicates DQPT
(Dynamical Quantum Phase Transition)
Some order parameter is non-analytic
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Γ1=0.9,  Γ2=1.1

Loschmidt Echo / Amplitude : L ⌘ |h (0)| (t)i|2.
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Rate constant r(t) = �(1/N) logL.
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Return Probability : L ⌘ |h (0)| (t)i|2
has been studied for quench of Hamiltonian of integrable systems
Can be measured experimentally

Transverse Ising model : global quench of external field from �1 to �2

r(t) = (�1/N) logL = �
Z ⇡

0
dk log

⇥
1� sin2 (�kt/2) sin
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where �k is energy for field �2 and �k is some function of �1 and �2
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At that kc , for some t = tc , sin (�kt/2) = 1
) Log term diverges, and singularity appears

Only when �1 < 1, �2 > 1 OR �1 > 1, �2 < 1

Singularity indicates DQPT
(Dynamical Quantum Phase Transition)
Some measurable quantities are non-analytic
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Quench = Initial state is the ground state for some specific external field

We use a generic state as the initial state 
and study the dynamics under Transverse Ising Hamiltonian



Initial State
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Generic pure state | (t = 0)i = ⌦| k(t = 0)i with
| k(t = 0)i = ↵k |11ik + �k |00ik + �k |10ik + �k |01ik

Normalisation needs |↵k |2 + |�k |2 + 2|�k |2 = 1 for all k

Measure of even parity E = |↵k |2 + |�k |2 and odd parity O = 2|�k |2

Note : For ground state O = 0, ↵k = i cos ✓k , �k = � sin ✓k

| (t)i = exp (�iHt) | (0)i, Loschmidt Amplitude : L ⌘ |h (0)| (t)i|2

Calculate rate constant r(t) = �(1/N) logL =
R ⇡
0 (· · · ) dk

Quench = Initial state is the ground state for some specific external field

We use a generic state as the initial state 
and study the dynamics under Transverse Ising Hamiltonian
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We start with

| (t = 0)i = ⌦k

hq
E

2 (|11ik + |00ik) +
q

1�E

2 (|01ik + |10ik)
i

Calculate | (t)i = exp (�iHt) | (0)i, Return Prob : L ⌘ |h (0)| (t)i|2

Rate constant r(t) = �(1/N) logL = �
R ⇡
0 dk log[1� E + E cos (�kt)]

r(t) shows kinks
for 0.5  E < 1.0
NOT for E < O
for ALL �

At the kinks 1� E + E cos (�kt) = 0 with k = 0 or k = ⇡
The curve is vertical at the left or right of the kink respectively
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�=0.49

�=0.5 Γ=0.5

�=0.99

time

r(t
)
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r(t
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k=0 k = "

time
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r(t) = �
Z ⇡

0
dk log[1� E + E cos (�kt)]
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Dynamical Quantum Phase Transition (DQPT)
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Hamiltonian H(�) = �
NX

j=1

sxj s
x
j+1 � �

NX

j=1

szj

Start from the ground state of H(�1) and evolve under H(�2)
Kinks (DQPT) appear when �1 and �2 are on two sides of the critical
point (ferro-para or para-ferro quench)

Start from a generic state
Kinks (DQPT) appear when weightage of even parity is larger than the
weightage of odd parity (driven by imbalance of parity)

Quench Protocol :

This work :

Hamiltonian H(�) = �
NX

j=1

sxj s
x
j+1 � �

NX

j=1

szj

Quench Protocol
Start from the ground state of H(�1) and evolve under H(�2)
Kinks (DQPT) appear when �1 and �2 are on two sides of the critical
point (ferro-para or para-ferro quench)

Start from a generic state
Kinks (DQPT) appear when weightage of even parity is larger than the
weightage of odd parity (driven by imbalance of parity)
For all values of �.

Hamiltonian H(�) = �
NX

j=1

sxj s
x
j+1 � �

NX

j=1

szj

Quench Protocol
Start from the ground state of H(�1) and evolve under H(�2)
Kinks (DQPT) appear when quenched through the critical point, that is,
�1 and �2 are on two sides of the critical point (ferro-para or para-ferro
quench). Only even parity states considered

Start from a generic state
Kinks (DQPT) appear when weightage of even parity is larger than the
weightage of odd parity (driven by imbalance of parity)
For all values of �



Earlier work for equal wightage of 
even and odd parity
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| (t = 0)i = ⌦| k(t = 0)i with
| k(t = 0)i = ↵k |11ik + �k |00ik + �k |10ik + �k |01ik

| (t = 0)i = ⌦ [↵k |11ik + �k |00ik + �k |10ik + �k |01ik ]

Weightage of even parity and odd parity are equal

E = O : |↵k |2 + |�k |2 = 2|�k |2

•Can be handled analytically, for calculation of transverse 
magnetisation

•The initial state has spatially inhomogeneous transverse 
magnetisation. (This happens for nonzero γk only.)
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• Whatever be the strength of the field, the magnetisation of the 
system does not become homogeneous even after infinite time

4 S. Bhattacharyya, S. Dasgupta: Dynamics in quantum Ising chain

�k can be obtained but is not required for our subsequent
calculations.

From now on we shall be restricted to the case where
↵k and �k are real and equal for all k, i.e. ↵k = ↵ and
�k = �. Then, in the thermodynamic limit, Mz(n, t) can
be written as

Mz(n, t) = �
1

2
+

1

⇡

Z ⇡

0
[Mk +mk(t) +mk(t/N)] dk

(17)
where

Mk = 2↵2 + (�2
� ↵2)(1�

1

2
cosun) sin2 2✓k

+
1

4
sin 4✓k sinun+

1

4
sin2 2✓k cos 2kn

mk(t) = [(↵2
� �2)(1� cosun) sin2 2✓k

�
1

4
sin 4✓k sinun ] cos 2�kt

+[2↵� sin 2✓k(1� cosun)] sin 2�kt

mk(t/N) =
1

2
(cos4 ✓k + sin4 ✓k)[2(�

2
� ↵2) cosun

+cos 2kn] cos 2⇡�0

k
t

N

� 2↵� cos 2✓k sin 2kn sin 2⇡�0

k
t

N

We have written �k+u � �k = 2⇡
N

d�k
dk = u�0

k as in the
thermodynamic limit the di↵erence between consecutive
k-points become infinitesimally small. The dynamics is
characterized by the behavior of transverse magnetization
Mz(n, t) at a time t at site n, as given by Eqs. (17). At
any given time (including t = 0) the magnetization is a
continuously varying function of n.

Initial magnetization as derived from Eq. (17) is given
by

Mz(n, t = 0) = �
1

2
+ 2↵2 + (�2

� ↵2) cosun (18)

and is shown in Fig. 1 for various ↵. Moreover, Eqs.
(17) and (18) indicate that the magnetization will be a
function of position at all time (Fig. 2).

The temporal behavior of transverse magnetization at
a given site is shown in Fig. 3 for di↵erent values of exter-
nal field. It exhibits oscillatory behavior with the envelope
decaying algebraically in the large time limit. It is evident
that Eq. (17) has two time-dependent parts, mk(t) and
mk(t/N) of two separate timescales. The former part gives
tiny undulations (Fig. 3(a)) and the other is responsible
to produce larger oscillation with algebraic decay of en-
velope and dominates in the large time limit. Hence, for
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Fig. 1. Initial Transverse magnetization as a function of posi-
tion n, for the state (7) with di↵erent ↵ keeping � = 0.5.
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Fig. 2. Transverse magnetization as a function of position
n, starting from initial state (7) with ↵k = 0.4 for all k and
� = 0.5. Here ⌧ = t/N .

t � 1 and t/N � 1, we have

Mz(n, ⌧) ⇡ M1(n)

+
1

⇡

Z ⇡

0
[
1

2
(cos4 ✓k + sin4 ✓k)

[2(�2
� ↵2) cosun+ cos 2kn] cos 2⇡�0
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k
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N
] dk

⇡ M1 +
1

⇡
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0
gk(n) cos(!k⌧ + �k(n)) dk

(19)

whereM1 = �
1
2+

1
⇡

R ⇡
0 Mk dk; !k = 2⇡�0

k = 2⇡(d�k/dk)
and ⌧ = t/N . The quantities gk(n), �k(n) can be written

Mz

at site n

t=0 

t = ∞ 

t/N=0.8 
t/N=0.4 

Main Results : (for E=O, |αk|2 + |βk|2 =2 |γk|2)
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• At each site, the transverse magnetisation decays in the form 
of damped oscillation. 

•The frequency of oscillation varies linearly with field for 
ferromagnetic phase and remains constant in paramagnetic 
state. The envelope of oscillation decays algebraically with 
exponent 0.5

6 S. Bhattacharyya, S. Dasgupta: Dynamics in quantum Ising chain
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Fig. 3. Plot of Mz at n = N/2 against ⌧ (= t/N), starting from initial state (7) with ↵k = 0.4 for all k. Mz is obtained by
numerical integration of Eq. (17) for N = 105. (a) Mz vs ⌧ alongwith small undulations due to time scale t. Variation of Mz for
very small change of ⌧ given as inset shows oscillations in small timescale. (b) Oscillations in large timescale are shown in Mz

vs ⌧ plot for � = 0.5 and � = 2. The envelopes of oscillations decay as ⌧� 1
2 both for � < 1 and � > 1. (c) Oscillations in the

region � < 1, where the frequency increases monotonically with � . (d) The frequency of the same becomes constant for � � 1.

both spatial and temporal variations take place even in
presence of a homogeneous and constant (in time) exter-
nal transverse field. At each site the magnetization evolves
in an oscillatory manner with the envelope decaying alge-
braically with exponent 1

2 . The oscillation and decay how-
ever do not lead to homogeneous magnetization because
the odd-occupation states have zero energy and their co-
e�cients, which are the prime factor for inhomogeneity,
remain nonzero forever. However, the retention of inho-
mogeneity has a deeper significance as it is connected
with the integrability of the system. Being an integrable
one, the local conservation laws possibly prohibit the sys-
tem from getting a homogeneous magnetization profile. A
non-integrable system, for the same reason, is expected to
exhibit the opposite. Dissipative transport found in non-

integrable system [40] also gives an indication to such be-
havior.

The exponent of decay is independent of the field i.e.,
it remains unaltered in ferromagnetic and paramagnetic
phases. The characteristic change is shown by the fre-
quency of oscillation at long time and the final magne-
tization at each site. They show di↵erent behavior in fer-
romagnetic and paramagnetic phases.

Thus we find no signature of criticality in the exponent
of decay whereas two new quantities are found to bear it.
Moreover, starting with such configuration, the inhomo-
geneity in transverse magnetization cannot be removed
by the external field. Both the phenomenon are counter-
intuitive to the prevailing ideas because the scenario may
be thought of as a quench from an initial state and the
preceding works on quench dynamics report the change of

Mz

t/N
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in terms of ✓ and k from the last equation, but the explicit
form is not necessary for our calculations below. We call
the ⌧ -independent term M1(n) because it will give us the
magnetization at ⌧ ! 1 which we shall discuss later.

We now observe the behavior of Mz for su�ciently
large ⌧ following the procedure in ref. [38]. For large ⌧ ,
the quantity (!k⌧ + �k(n)) will be large so that its cosine
will fluctuate very rapidly and vanish on integration unless
!k is very small. Hence the region where !k is minimum
with respect to k will only contribute to the integral. This
minima is found to occur at

k = k0 =

⇢
cos�1(�� ) for |� | < 1
cos�1(� 1

� ) for |� | > 1
(20)

Obviously
⇡

2
 k0  ⇡. It is hence su�cient to inte-

grate the oscillatory term over a small region k0 � ✏ <
k < k0 + ✏ (✏ becoming smaller and smaller with increas-
ing ⌧) where gk(n) and �k(n) do not vary appreciably.
Expanding !k about k = k0,

!k = !k0 +
1

2
F (k � k0)

2 (21)

(where F = (d2!k/dk2)k=k0) we get the expression for
magnetization at large ⌧ as,

Mz(n, ⌧) ⇡ M1 + gk0(n) cos (!k0⌧ + �k0(n))
r

2

F ⌧

Z +✏
p

C⌧
2

�✏
p

F⌧
2

cos y2 dy

⇡ M1 + gk0(n)

r
⇡

F

1
p
⌧
cos (!k0⌧ + �k0(n))

(22)

where y =
q

F⌧
2 (k � k0). Thus it is evident that for the

chosen initial configuration, the transverse magnetization
always exhibits ⌧�

1
2 decay in the envelope of oscillation

irrespective of the magnitude of the transverse field. Such
decay was found in ref. [38] also.

As shown in Fig. 3(c) and (d), the frequency of oscil-
lation varies monotonically with � in the ferromagnetic
phase and becomes independent of � in the paramagnetic
phase. It can be explained analytically. We note from Eq.
(20) that k0 changes from cos�1(�� ) to cos�1(� 1

� ) as �
crosses the critical point. This means that the frequency
in the large ⌧ limit behaves as

|!k| = 2⇡

����
d�k

dk

���� =
⇢
4⇡� for |� | < 1
4⇡ for |� | > 1

(23)

The significance of this nonanalytic behavior of frequency
is that it coincides with the occurrence of order-disorder
quantum phase transition of the system.

The behavior at ⌧ ! 1 (and hence t ! 1 as well) can
be obtained from Eq. (17) by performing the integrations
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Fig. 4. Signature of criticality : (a) |!k| vs � plot & (b) M1
vs � plot, for n

N = 0.5 with the initial state (7) taking ↵ = 0.4
for all k.
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and for � < 1,

M1(n) = �
1

2
+ 2↵2

�
sin un

4⇡


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�
+
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� 1
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log
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The persistence of inhomogeneity of magnetization at
⌧ ! 1 is evident. Another important aspect of the long-
time behaviour is that the quantityM1(n) shows di↵erent
behavior as a function of � in ferromagnetic and param-
agnetic region and is non-analytic at the critical point.
Such behaviour originates from two integrals involved in
the calculation of M1(n). They can be written as a con-
tour integral over the unit circle and the integrand has
poles at z = � and z = 1/� . For � < 1, the former
pole is inside the unit circle and for � > 1, the latter is
inside. Such swapping of poles that leads to a change in
functional behavior and to non-analyticity has also been
observed elsewhere [39] in slightly di↵erent context.

4 Conclusion

We have shown analytically that in a transverse Ising
chain at zero temperature, a state can be constructed in
the product structure in momentum space so that it pro-
duces spatial variation in transverse magnetization. Such
inhomogeneity gives rise to transport of transverse mag-
netization from one site to another as a result of which

ω

Γ
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• The local magnetisation after infinite time varies differently with 
field in ordered and disordered phases.
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in terms of ✓ and k from the last equation, but the explicit
form is not necessary for our calculations below. We call
the ⌧ -independent term M1(n) because it will give us the
magnetization at ⌧ ! 1 which we shall discuss later.

We now observe the behavior of Mz for su�ciently
large ⌧ following the procedure in ref. [38]. For large ⌧ ,
the quantity (!k⌧ + �k(n)) will be large so that its cosine
will fluctuate very rapidly and vanish on integration unless
!k is very small. Hence the region where !k is minimum
with respect to k will only contribute to the integral. This
minima is found to occur at

k = k0 =

⇢
cos�1(�� ) for |� | < 1
cos�1(� 1

� ) for |� | > 1
(20)

Obviously
⇡

2
 k0  ⇡. It is hence su�cient to inte-

grate the oscillatory term over a small region k0 � ✏ <
k < k0 + ✏ (✏ becoming smaller and smaller with increas-
ing ⌧) where gk(n) and �k(n) do not vary appreciably.
Expanding !k about k = k0,

!k = !k0 +
1

2
F (k � k0)

2 (21)

(where F = (d2!k/dk2)k=k0) we get the expression for
magnetization at large ⌧ as,

Mz(n, ⌧) ⇡ M1 + gk0(n) cos (!k0⌧ + �k0(n))
r

2

F ⌧

Z +✏
p

C⌧
2

�✏
p

F⌧
2

cos y2 dy

⇡ M1 + gk0(n)

r
⇡

F

1
p
⌧
cos (!k0⌧ + �k0(n))

(22)

where y =
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2 (k � k0). Thus it is evident that for the

chosen initial configuration, the transverse magnetization
always exhibits ⌧�

1
2 decay in the envelope of oscillation

irrespective of the magnitude of the transverse field. Such
decay was found in ref. [38] also.

As shown in Fig. 3(c) and (d), the frequency of oscil-
lation varies monotonically with � in the ferromagnetic
phase and becomes independent of � in the paramagnetic
phase. It can be explained analytically. We note from Eq.
(20) that k0 changes from cos�1(�� ) to cos�1(� 1

� ) as �
crosses the critical point. This means that the frequency
in the large ⌧ limit behaves as

|!k| = 2⇡

����
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4⇡� for |� | < 1
4⇡ for |� | > 1

(23)

The significance of this nonanalytic behavior of frequency
is that it coincides with the occurrence of order-disorder
quantum phase transition of the system.

The behavior at ⌧ ! 1 (and hence t ! 1 as well) can
be obtained from Eq. (17) by performing the integrations
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and for � < 1,
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The persistence of inhomogeneity of magnetization at
⌧ ! 1 is evident. Another important aspect of the long-
time behaviour is that the quantityM1(n) shows di↵erent
behavior as a function of � in ferromagnetic and param-
agnetic region and is non-analytic at the critical point.
Such behaviour originates from two integrals involved in
the calculation of M1(n). They can be written as a con-
tour integral over the unit circle and the integrand has
poles at z = � and z = 1/� . For � < 1, the former
pole is inside the unit circle and for � > 1, the latter is
inside. Such swapping of poles that leads to a change in
functional behavior and to non-analyticity has also been
observed elsewhere [39] in slightly di↵erent context.

4 Conclusion

We have shown analytically that in a transverse Ising
chain at zero temperature, a state can be constructed in
the product structure in momentum space so that it pro-
duces spatial variation in transverse magnetization. Such
inhomogeneity gives rise to transport of transverse mag-
netization from one site to another as a result of which
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•We investisgate the singularities in the Loschmidt echo starting 
from a generic state. The singularities are found to be driven by 
the difference of weightage of even parity and odd parity states 
(for E≠O)

• How can one realise experimentally a generic state, like the 
one considered here?

• How does the non-local observables (say, the longitudinal 
magnetisation) behave? Do they bear a signature of dynamical 
transition?
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