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A Blast Wave

• How does the radius increase with time? 

• How do pressure, density, and temperature vary with distance?



Growth of Radius
R(t) = f(E0, t, ρa, Ta)

[E0] = ML2T−2

[ρ0] = ML−d

[t] = T

d = 3 ⟹ R(t) ∝ t2/5

R(t) = c ( E0t2

ρ0 )
1

d + 2



Nuclear explosion

Taylor, Proc. Roy. Soc. A (1950)



Spatial variation
• Mass

• Momentum

• Energy

∂tρ + ∂r(ρv) + 2r−1ρv = 0

∂tv + v∂rv + ρ−1∂r p = 0

∂t(pρ−γ) + v∂r(pρ−γ) = 0

• Local Equilibrium 
★ An equation of state  
★ Thermal energy in terms of local 

pressure and density 
★ Ideal gas law 

• Heat flux term dropped in energy 
conservation

Assumptions

• Discontinuities at shock front 

• Rankine Hugoniot conditions

Boundary conditions

• In terms of scaled variables, PDEs reduce to ODEs 

• Solved by Taylor, Sedov, Neumann 

• A classic problem in gas dynamics



In this talk

• Most studies focus on modifications of the PDEs to include 
different effects like radiation, conduction, instabilities, etc. 

• Surprisingly, there are no detailed studies of microscopic models.  

• How do the hydrodynamic results compare with large scale 
simulations of a particle based microscopic model? 

• Are the assumptions valid?



A microscopic model

(a) (b)

(c) (d)



Benchmarking
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Comparison with TvNS
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Comparison with TvNS

Where does it go wrong?
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Excluded volume effects
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• Replace ideal gas law by viral expansion (10 terms)



Assumption of equation of 
state?
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Velocity Fluctuations



Summary

• Revisited problem of shock propagation following an intense 
explosion 

• The hydrodynamic results do not match with simulations of a 
particle-based model 

• Assumption of existence of local equation of state is 
consistent with simulation results 

• But, velocity fluctuations are not Gaussian 
★ Whether these are responsible for the discrepancy can be 

checked by re-assigning velocities to ensure local 
equilibrium 

• Heat conduction?



Heat Conduction
• With conduction, the boundary condition at centre is zero heat flux, 

or gradient in temperature in zero 

• Heat conduction regularises diverging temperature at shock centre 

• Within kinetic theory, heat conduction term not important. Have to 
assume conductivity proportional to T1/6

Ghoniem et al, J. Fluid. Mech. (1982)

• However, the profile near the shock front should not be affected 

• Also with heat conduction, is there a quantitative match?
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