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FQH States
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FQH States
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Even denominator FQHE
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FQHE in the lowest Landau level:

Can be described using a model of
single Landau level of electrons
interacting through a two-body
Coulomb interaction.

FQH occurs at odd-denominator
filling fractions -- well-understood in
terms of emergent particles called
composite fermions

No FQHE at filling fraction %

Second Landau level:
Strong FQH state at filling fraction .

General structure of the FQH states
not very well understood



Pfaffian, Anti-pfaffian and Particle hole symmetry
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of emergent particles
called composite
fermions



Pfaffian, Anti-pfaffian and Particle hole symmetry
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Pfaffian which occurs at a filling fraction of 1/2 is not particle hole symmetric

‘Anti Pfaffian’ defined as the PH conjugate of the Pfaffian is a different

topologically ordered state at the same filling fraction 72 (Levin, Halperin, Rosenow
PRL 2007, Lee et al PRL 2007)

Two-body interaction within a Landau level is PH symmetric = System
spontaneously breaks PH symmetry. Inter Landau level mixing could provide
a breaking field.

Aside: Actual resolution of this might be slightly more exotic (Banerjee et al
arXiv:1710.00492, Mross et al arXiv 1711.06278; Wang et al arXiv 1711.11557; Simon
arXiv:1801.09687 )



LL Mixing - ineffective particle hole symmetry
breaking
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Leads to correction to the two-body interaction Hamiltonian (which do not

break particle hole symmetry)
+

PH symmetry breaking three-body interactions between the electrons.
(Bishara, Nayak PRB 2009, Simon, Rezayi PRL 2011, Sodeman, MacDonald
2013)

Some calculations point to a Pf ground state (\Wojs et al PRL 2010, Pakrouski
et al PRX 2015)

Others suggest a APf ground state (Rezayi, Simon PRL 2011, Zalatel et al
2015, Rezayi PRL 2017)

They all point to the fact that the effect of particle hole symmetry breaking is
weak.



LL Mixing - ineffective particle hole symmetry
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pEintermediate states
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Effect of LL mixing on particle hole symmetry
breaking is weak

= The generic three-body interactions induced by
LL mixing should effectively act as a PH symmetric
two-body interaction.
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LL Mixing - ineffective particle hole symmetry

breaking
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Spherical geometry and Haldane pseudopotentials

S H Simon, R Rezayi, N Cooper PRB 2006
Haldane 1983

Bulk physics of the system can be
effectively studied in a spherical
geometry

Translational, rotational symmetry of the
bulk of the system manifests as
complete rotational symmetry on the
sphere.

Energy depends only on the L? quantum
number.

A rotational symmetric Hamiltonian can
be parametrized using a few ‘Haldane
pseudopotentials’ instead of all matrix
elements.
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three-body interaction beyond the shortest range

short range

Short range three-body interaction
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Generic three-body interaction

N
HSBI _ Z Z VLPéjk

i<j<k=1 L

GJS, Y Zhang, Jain PRB 2017

(zeneric

: . >
) body int 3 bodyv int
B=0 0.1 0.2 0.3 0.4 0.5
tf':'
_—-.—--_ L:::I\-
2 o | TESEp—— |1
= - - e S ™
5 ol CHlL | =k
G, = =S - s = &
E P = | i EY L I
- = = -_— -
3 gt |imais 3
= it 1
= o
[l
0.86 =(.91 -0.93 =094 -0.94 =,
I I 1 1 I 1 1 I 1 | I
[ r 10 1 i a ol 100 3 O 510
-l'_-q__ _— L
— L e —_ Ay -.\_:
A == "= | - 11
@ - e - - ] T =
=] ——_ _ =] == o
| - = = - ~1
g | alap 21 M = - = [y
€z _ -"_- - = =
o — — — g S |
57 mn| - S
i el | _ 3
:E' 1] = ., -~ =] ﬂ j
3] 8 - E E & & |
i = R = = = i
I I I I I I I I I I I I I I I '-?'-'
n 5 100 o 100 5 1040 > 100 5 100 5 10
L I L L i I




Mean field approximation to the 3-body interaction

Can the generic three-body interaction be approximated with a
two-body interaction ?
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Mean field approximation to the 3-body interaction

Can the generic three-body interaction be approximated with a
two-body interaction ?
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Mean field approximation to the 3-body interaction

Can the generic three-body interaction be approximated with a
two-body interaction ?

BI
MF(HS ) = H®) = Z Vp1,p2,p3;Q1,Q2,QBC;L?1 1];2 <Cpgcq3> Cq2Cqn

For any . 1‘ ‘l‘
incompressible - E Vp1 ,P2,P35;41,492,43 Cpl P2 5293 g3 CQ’2 C(]1
homogeneous
FQH state
3B1 (2) . 2 : T T
MF(H ) Vpl yP25,41,42 p1 sz CQ’Q CQ1

Vp1,p25611,Q2 — E :Vp1,p2,$;Q1,QQ,$

€T



Mean field mapping: Properties

Linear MF(H,)+ MF(Hy) = MF(H, + Hy)

Rotational symmetry:
If H is rotationally symmetric, the interaction MF(H) is rotationally symmetric.

N
2body pij
MF(H)= Y V>ovpy
1<j=1
Thus MF is a well-defined linear mapping from three-body Haldane
pseudopotentials to two-body Haldane pseudopotentials

PH symmetry: The mapping indeed gives a particle hole symmetric
Hamiltonian by definition (it is a two-body interaction).

It indeed gives the particle hole symmetrization of the three-body interaction.

MF(H)=H + PHC(H)

M Peterson, K Park, S D Sharma PRL 2008;
GJS,Y Zhang, Jain PRB 2017; Kusmierz, GJS (in prep);



Testing the mean field mapping
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Testing the mean field mapping
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Summary

Various short-range n-body terms in the Hamiltonian specify constraints
on the many-particle correlations in the low-energy wavefunctions.

Generic n-body constraints on the many-particle wavefunctions imply and
are implied by constraints on a smaller number of particles.

Fewer-body terms should reproduce the low-energy spectrum --> mean
field approximation

Can be generalized to the n>3 body case. (Kusmierz, GJS (in preparation))



Mean field pseudopotentials

MF approximation to the short range -
three-body interaction gives the S 10
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Optimal two-body interaction for the Pfaffian state

Scan for an optimal two-body interaction that produces the Pfaffian ground state

1.0 Mean field approximation to
three-body interaction gives the
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