Dynamic jamming in dense particulate suspensions

Sayantan Majumdar

Raman Research Institute, Bangalore

Adaptive materials

Rapid, controlled reversible changes: adapting to changing environment

Designing such materials is extremely challenging

Dense suspensions : New physics

Unusual flow properties

Can't be understood from the properties of liquid and solid

Impact Activated Solidification

Dense suspensions can turn into a transient solid under rapid impact

Fall et al., JoR (2012)

Brown and Jaeger (2014)

Impact Activated Solidification

Waitukaitis, PhD Thesis (2013)

Growing solid-like jammed region - Dynamic 'jamming front'.

'Jamming front' travels much faster than impact speed.

What happens under non-compressive deformations??

Transient response under extension

10 Pas Silicone oil (10000X more Viscous than water)

Force / stress response under extension

Observed high stresses cannot be rationalized by hydrodynamic approaches

Isotropic jamming transition

Anisotropic jamming transition: Shear jamming

Boundary shear maintains the growing jammed region

Growing correlated region

Solid-like jammed region

small velocity gradient

$$\dot{\epsilon}_{r\theta z} = \begin{bmatrix} \dot{\epsilon}_{rr} & \dot{\epsilon}_{r\theta} & \dot{\epsilon}_{rz} \\ \dot{\epsilon}_{\theta r} & \dot{\epsilon}_{\theta \theta} & \dot{\epsilon}_{\theta z} \\ \dot{\epsilon}_{zr} & \dot{\epsilon}_{z\theta} & \dot{\epsilon}_{zz} \end{bmatrix}$$

The jamming is purely shear-induced

Solid-like jammed states in dense suspensions

Jamming under simple shear

Peters, Majumdar and Jaeger, Nature, 2016

Seto et al., PRL (2013)

Dense suspension with frictional particles show solid like jammed state under shear

Conclusions

 Transient jamming dynamics under extension is very similar to impact activated solidification (IAS).
Upper limit of stresses are well beyond the prediction of capillarity and lubrication hydrodynamics.

2. Unlike IAS, under extension the jamming front travels opposite to the forcing direction.

3. The jamming is entirely shear induced.

Jamming transition: Future challenges

• What 'interparticle friction' means ?

Acknowledgements

Collaborators

Prof. Heinrich Jaeger U. Chicago

Dr. Ivo Peters U. Southampton

Endao Han U. Chicago

Special thanks

Prof. Tom Witten, Prof. Margaret Gardel, Nicole James

For Kadanoff-Rice Fellowship

Thank you for your attention