
Block Analysis for the Calculation of Dynamic and Static    
Length Scales in Glass-Forming Liquids	

	
    Smarajit Karmakar 

Center for Interdisciplinary Sciences,  
Tata Institute of Fundamental Research,  

Hyderabad	

Phys. Rev. Lett, 119 205502 (2017).  

Collaborators: 
Saurish Chakrabarty (ICTS),  Indrajit Tah (TIFR-H),  Chandan Dasgupta (IISc) 



Dynamic Heterogeneity:  Coexistence of “slow” 
and “fast” regions 

Dynamical heterogeneity  Weeks et al. Science 2000  

The locations of the fastest particles (large spheres) and 
the other particles (smaller spheres). The spheres are 
drawn smaller for clarity; the particles all have the same 
physical size, which is the size of the large spheres 
shown in this figure. (A) “Supercooled” sample with φ = 
0.56, Δt* = 1000 s; the fastest particles had a 
displacement >0.67 µm. The red cluster contained 69 
particles; the light blue cluster contained 50 particles.  
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Dynamic Heterogeneity Length Scale  
[ Karmakar et al. PNAS 106, 3675 (2009)  ] 
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Figure 2.19: Data collapse of χP
4 (N, T ) with the correlation length extracted from the

scaling collapse of B(N, T ), the adjustable parameter in this case is the asymptotic

value of χP
4 (T, N), i.e χP

4 (T, N → ∞)

derlying correlation length then the probability distribution will change from non

Gaussian to Gaussian as one increases the system size from L < ξ(T ) to L > ξ(T ).

The remarkable change in the shape of the distribution signals that there is indeed

a growing correlation length as one decreases the temperature.

This same change in shape of the distribution will happen if one keeps the system

size same and changes the temperature. Now as one decreases the temperature

correlation length will grow beyond the linear size of the system and the shape of the

probability distribution will change from Gaussian to non Gaussian. Fig.2.21 shows

that for system size N = 200, as one decreases the temperature the distribution is

changing from Gaussian to non Gaussian. In spin system one expect same kind of

behaviour.
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Figure 3.2: 1/S4(q, τ4) plotted as a function of q2 for T = 0.600, for N = 28160 and N =
351232. The line is Ornstein-Zernike function with parameters χ0 and ξ obtained

from finite size scaling, showing excellent agreement in the small q2 range.

same q2 value. Our fit parameters, with error bars, are estimated from non-linear

least squares fitting, using data in a variable range of q2 values, from the lowest

available value of q2 to a largest specified q2 value, q2
max (we ensure that we have

a minimum of 6 data points to fit). This allows us to get an estimate of possible

error in our estimates depending on the data sets used for the analysis. We have

also considered removing the constraint on the coefficient of the quartic term. How-

ever, removing the constraint leads to erratic behavior of the fit parameters (which

fail dramatically to describe the data beyond the fit range) in the important limit

of restricting our fitting to small q2
max values. Hence we do not report results from

this method. Finally, we consider analyzing ln(S4(q, τ4)) which is used to obtain the

length ξ from considering its derivative as q2 → 0, as in [5] [8]. Here, we fit our data

to either a polynomial that is linear in q2 or quadratic in q2 (i.e. has a q4 term). Thus,

we fit our data using the following four different methods, to estimate ξ and χ0:

• Method-1 :: 1/S4(q, τ4) = 1
χ0

(1 + q2ξ2)
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agreement within error bar with those from the S4(q, τ4) analysis. We also show

in Fig.3.9 that the asymptotic value of peak height of the four-point susceptibility,

χp
4(T ), are in excellent agreement with those extracted from the intercept of S4(q, τ4)

as q → 0.
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Figure 3.8: Comparison of correlation length extracted from “by eye” data collapse

of the Binder Cummulant (triangles), nonlinear least squares fitting of the Binder

Cummulant (circles) and S4(q, τ4) analysis (squares). Values from finite size scaling

are shifted (by 1.014) to agree with the value from analyzing S4(q, τ4) at T = 0.60

3.9 Conclusion

The main conlusions for our present work are

• length scales obtained from FSS [4] agree with the best estimates we can ob-

tain from analysis of S4(q, τ4).

• The estimates based on S4(q, τ4) have large uncertainties, and depend deli-

cately on the details of the fitting procedure used, the system size, etc.

•  FSS results are in complete agreement 
with conventional methods.  

•  FSS method are robust and does not 
require simulation of very large system 
size. 

2.4. Dynamic Properties : Four-point Dynamic Susceptibility, χ4(t) and Structure
Factor, S4(q, t) 61

This measures the number of overlapping particles between two configurations sep-

arated by time interval t. The fluctuations in this two point function can be defined

as

χP (t) =
1

N
[⟨Q2

P (t)⟩ − ⟨QP (t)⟩2] (2.7)

It has been demonstrated in several papers [49, 50, 51, 52, 53] that vibrational

motion is only weakly correlated at best; strong correlations appear only on longer

time scales when particles move a substantial distance and escape from their cages.

To capture this motion using the four-point correlation function of Eq.2.7 we have

coarse grained the equation by defining a counterpart, Q(t), to Qp(t) in terms of a

parameter a, associated with the typical amplitude of the vibrational motion of the

particles. Henceforth we will use this coarse grained definition of Q(t) and χ4(t) in

all the subsequent analysis. The self part of this coarse grained overlap function

Q(t) is defined as

Q(t) =
N
∑

i=1

w(|r⃗i(0) − r⃗i(t)|) (2.8)

where

w(r) =
{

1 r ≤ a

0 otherwise
(2.9)

and with these definition the final expression of four point susceptibility becomes

χ4(t) =
1

N
[⟨Q2(t)⟩ − ⟨Q(t)⟩2] (2.10)

The four point dynamic structure factor S4(q, t) is defined by

S4(q, t) =
1

N
⟨Q̃(q, t)Q̃(−q, t)⟩ (2.11)

where

Q̃(q, t) =
N
∑

i=1

exp[ıq⃗.r⃗i(0)]w(|r⃗i(0) − r⃗i(t)|) (2.12)

and its q → 0 value is related to χ4(t) as

lim
q→0

S4(q, t) = χ4(t) (2.13)

In order to extract the dynamical correlation length from the structure factor we

will assume the functional form of S4(q, t) at t = τ in the limit q → 0 as

S4(q, τ, T ) =
S4(0, τ, T )

1 + [qξ(T )]2
(2.14)

This relation does not hold 
in the canonical ensemble 



•  Different	methods	for	calcula3ng	sta3c	length	scale:		
–  Point-to-set	Correla.on	func.on	
–  Patch	Repe33on	Length	Scale	
–  Curvature	of	local	poten3al	energy	minimum	(Hessian	Matrix)	
–  	Finite	size	scaling	of	relaxa3on	3me	
All	these	methods	are	involved	in	nature	and	some3me	require	a	lot	
microscopic	details.	Thus	they	are	not	prac3cal	for	real	glass	forming	
liquids	and	are	mostly	studied	for	model	liquids	in	simula3ons.	
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The dramatic dynamic slowing down associated with the glass transition is considered by many to be

related to the existence of a static length scale that grows when temperature decreases. Defining,

identifying, and measuring such a length is a subtle problem. Recently, two proposals, based on very

different insights regarding the relevant physics, were put forward. One approach is based on the point-to-

set correlation technique and the other on the scale where the lowest eigenvalue of the Hessian matrix

becomes sensitive to disorder. Here we present numerical evidence that the two approaches might result in

the same identical length scale. This provides mutual support for their relevance and, at the same time,

raises interesting theoretical questions, discussed in the conclusion.

DOI: 10.1103/PhysRevLett.111.165701 PACS numbers: 64.70.P!, 63.50.Lm, 64.70.Q!

A natural assumption that prevails in the physics com-
munity regarding the glass transition is that together with
the spectacular slowing-down associated with this phe-
nomenon there should also be a length scale that increases
in accordance with the increased time scale [1]. Decades of
research efforts were devoted to finding such a length [2,3].
The discovery of dynamic heterogeneity in supercooled
liquids both in experiments and in theoretical studies [4]
and the detailed analysis of the associated dynamical
length scale using multipoint correlation functions [5–12]
revealed that more and more particles move in a correlated
way approaching the glass transition. There is no doubt by
now that there exists a growing dynamic length accompa-
nying the glass transition. Although this is a new and
important facet of the phenomenology of supercooled
liquids, it is still not clear to what extent dynamic correla-
tions are the consequence or the primary origin of slow
dynamics [11]. Another natural candidate for the dominant
length scale of glassy dynamics is a static length. Finding it
remained an open problem for a long time. Recently, two
very specific and very different methods to determine the
elusive characteristic length scales have been proposed and
implemented. In this Letter we review both methods and
provide numerical indications that although the two meth-
ods are extremely different, they seem to lead to the same
length scale. This provides further mutual support for their
relevance and, at the same time, raises interesting theoreti-
cal questions concerning the fundamental reason for their
relationship.

The first method is based on the ‘‘point-to-set’’ (PTS)
length [13,14] that will denote henceforth as !PTS. This
length, originally introduced to characterize the real space
structure of the so-called ‘‘mosaic state’’ arising in the
random first order transition (RFOT) theory [13,15], allows
one to probe the spatial extent of positional amorphous

order. It has attracted a lot of attention recently. In particu-
lar, it was measured in several numerical simulations
[16–20] and shown to grow mildly in the (rather high)
temperature regime investigated. Rigorous results have
also strengthened its relevance: in [21] it was proven that
if the relaxation time scale "# diverges in a super-
Arrhenius way, either at finite temperature or at zero
temperature, then !PTS has to diverge too, at least as fast

as ðT log"Þ1=d (d being the spatial dimension). The defini-
tion of the point-to-set length is the following: take a
typical equilibrium configuration, freeze the positions of
all particles outside a sphere centered around a given point,
and study how the thermodynamics of the remaining par-
ticles, inside the sphere, is influenced by this amorphous
boundary condition; !PTS is the smallest radius of the
sphere at which the boundary no longer has any effect on
the configuration at the center. This procedure is very
similar to the one used to demonstrate the existence of
long-range order for, e.g., the 3D Ising model: setting the
boundary spins up at low temperature forces all configura-
tions, even far from the boundary, to be in the up state. The
crucial difficulty in supercooled liquids is that we do not
know a priori what is the correct boundary condition
favoring amorphous order; the trick of freezing the particle
positions outside the cavity uses the fact that instead the
system ‘‘does’’ it, if it is indeed becoming more and more
spatially statically correlated and amorphously ordered. In
practical implementation, an overlap function (defined
below) is used to estimate the degree of similarity in the
center of the cavity between the initial configuration and
the one equilibrated in the presence of the frozen amor-
phous boundary conditions.
The overlap function used for this study is same as in

[19] and is given by
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Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the 
understanding of the complex structural relaxation and rapid growth of relaxation times seen 
on approaching the glass transition. A central conceptual question is whether one can identify 
one or more growing length scale(s) associated with this behavior. Given the diversity of 
molecular glass-formers and a vast body of experimental, computational and theoretical work 
addressing glassy behavior, a number of ideas and observations pertaining to growing length 
scales have been presented over the past few decades, but there is as yet no consensus view on 
this question.

In this review, we will summarize the salient results and the state of our understanding of 
length scales associated with dynamical slow down. After a review of slow dynamics and the 
glass transition, pertinent theories of the glass transition will be summarized and a survey 
of ideas relating to length scales in glassy systems will be presented. A number of studies 
have focused on the emergence of preferred packing arrangements and discussed their role in 
glassy dynamics. More recently, a central object of attention has been the study of spatially 
correlated, heterogeneous dynamics and the associated length scale, studied in computer 
simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number 
of static length scales have been proposed and studied recently, such as the mosaic length scale 
discussed in the random first-order transition theory and the related point-to-set correlation 
length. We will discuss these, elaborating on key results, along with a critical appraisal of 
the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids 
and amorphous solids, and give a brief description of length scales in aging systems. Possible 
relations of these length scales with those in glass-forming liquids will be discussed.

Keywords: glass forming liquids, glasses, structrual relaxation, length scales, glass transition, 
amorphous solids
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Length scales in glass-forming liquids and 
related systems: a review
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Abstract

The question of whether the dramatic slowing down of the dynamics
of glass-forming liquids near the structural glass transition is caused
by the growth of one or more correlation lengths has received much
attention in recent years. Several proposals have been made for both
static and dynamic length scales that may be responsible for the
growth of timescales as the glass transition is approached. These
proposals are critically examined with emphasis on the dynamic
length scale associated with spatial heterogeneity of local dynamics
and the static point-to-set or mosaic length scale of the random first-
order transition theory of equilibrium glass transition. Available
results for these length scales, obtained mostly from simulations,
are summarized, and the relation of the growth of timescales near
the glass transition with the growth of these length scales is exam-
ined. Some of the outstanding questions about length scales in
glass-forming liquids are discussed, and studies in which these ques-
tions may be addressed are suggested.

12.1

Changes may still occur before final publication online and in print

An
nu

. R
ev

. C
on

de
ns

. M
att

er 
Ph

ys
. 2

01
4.5

. D
ow

nlo
ad

ed
 fr

om
 w

ww
.an

nu
alr

ev
iew

s.o
rg

by
 W

ash
ing

ton
 U

niv
ers

ity
 - S

t. L
ou

is 
on

 01
/20

/14
. F

or 
pe

rso
na

l u
se 

on
ly.



𝑞𝑐 𝑅 =
1
𝑙2𝑁𝜈
 < 𝑛𝑖 𝑡0 𝑛𝑖 𝑡0 + ∞ >
𝑖∈𝜈

 

The overlap function is defined as 

Point to set length scale in cavity geometry Ref. [*]. 

 

Point to set Length Scale 

*  Hocky GM, Markland TE, Reichman DR  Phys.  Rev  Lett. 108(22):225506 
* Birilo G, Bouchad J-P, Cavagna A, Grigera T S and Verrocchio P 2008 Nat Phys. 4 771 

This Method is order agnostic 

𝑞𝑐 𝑅 − 𝑞0 = 𝐴𝑒𝑥𝑝(−
𝑅−1
𝜉𝑝𝑡𝑠

𝜂
 fits all 

the data at all temperature. 
𝑞0 = 𝜌𝑙2 



•  Experimental	determina3on	of	this	sta3c	length	scale	remained	a	major	challenge.	

	
•  Measuring	the	higher	order	non-linear	dielectric	suscep3bili3es	is	extremely	difficult	as	they	are	

many	orders	of	magnitude	smaller	than	the	leading	linear	contribu3on.	Special	experimental	
techniques	were	developed	to	reliably	measure	these	higher	order	suscep3bili3es.	

		
	

1:1 d.r.). This strategy can also be applied to the
HAT arylation of a-oxy C–H bonds. Tetrahydro-
furan (THF) and oxetane both undergo a-oxy ar-
ylation in good efficiency (51 and 52, 76 and 53%
yield). Finally, we have demonstrated that this
C–H arylation protocol is effective for benzylic sys-
tems as para-xylene is arylated in 54% yield (53).
Indeed,we expect that application of this strategy
to a broad range of a-oxy, a-amino, and benzylic
C–H–bearing substrates will demonstrate the gen-
eral utility of this selective C–H arylation protocol.
Finally, the capacity to control the regioselec-

tivity of the outlined HAT abstraction along with
the opportunity to utilize C–H bonds as latent
nucleophiles brings forward the possibility of en-
abling multiple native functionalizations to be
conducted in sequence—a strategy that should
allow the rapid constructionofmolecular complexity
from a large variety of readily available organic
feedstock chemicals. As one example, we postu-
lated thatN-Boc proline methyl ester (54) might
be differentially arylated via (i) the photoredox-
mediated HAT method presented in this work,
followed by (ii) a photoredox-mediated Ni(II)
decarboxylative arylation. As shown in Fig. 4,N-Boc
proline methyl ester underwent selective aryla-
tion at the 5-methylene position using the HAT
cross-coupling strategy described herein (66%
yield, 4:1 d.r.). The observed regioselectivity is
usefully complementary to that which would be
expected with establishedmethods for transition
metal–catalyzed cross-coupling. Whereas many
current strategies use basic conditions to selec-
tively functionalize acidic hydrogens (as in enolate
arylations), our developed HAT protocol targets
hydridic hydrogen atoms, thereby providing access
to fundamentally distinct product classes. Follow-
ing the successful application of the C–Harylation
outlined herein, the corresponding amino acid
product 55 underwent decarboxylative coupling
with 2-fluoro-4-bromopyridine at the 2-posi-
tion, delivering the 2,5-diarylated pyrrolidine ad-
duct in excellent yield (56, 73% yield, 4:1 d.r.). We
have also demonstrated aHAT arylation followed
by a nickel-catalyzed C–O coupling (37). N-Boc
3-hydroxyazetidine can be selectively arylated at
the 2-position in 45% yield (36, Fig. 3), leaving the
alcohol unreacted. The free alcohol can then be sub-
sequently arylated with 4-bromo-2-methylpyridine
to deliver the aryl ether product in 77% yield (see
supplementary materials).
This HAT strategy represents a powerful dem-

onstration of the versatility of using sp3 C–Hbonds
as organometallic nucleophile equivalents and
will likely find application in the realmof late-stage
functionalization. We believe that this protocol
will gainwidespread usewithin the synthetic com-
munity as a complement to existing cross-coupling
technologies.
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GLASS TRANSITION

Fifth-order susceptibility unveils
growth of thermodynamic
amorphous order in glass-formers
S. Albert,1 Th. Bauer,2* M. Michl,2 G. Biroli,3,4 J.-P. Bouchaud,5 A. Loidl,2

P. Lunkenheimer,2 R. Tourbot,1 C. Wiertel-Gasquet,1 F. Ladieu1†

Glasses are ubiquitous in daily life and technology. However, the microscopic mechanisms
generating this state of matter remain subject to debate: Glasses are considered either
as merely hyperviscous liquids or as resulting from a genuine thermodynamic phase transition
toward a rigid state.We show that third- and fifth-order susceptibilities provide a definite answer
to this long-standing controversy. Performing the corresponding high-precision nonlinear
dielectric experiments for supercooled glycerol and propylene carbonate, we find strong
support for theories based on thermodynamic amorphous order. Moreover, when lowering
temperature, we find that the growing transient domains are compact—that is, their fractal
dimension df = 3.The glass transitionmay thus represent a class of critical phenomena different
from canonical second-order phase transitions for which df < 3.

T
he glassy state of matter, despite its omni-
presence in nature and technology (1),
continues to be one of the most puzzling
riddles in condensed-matter physics (1, 2):
For all practical purposes, glasses are rigid

like crystals, but they lack any long-range order.
Some theories describe glasses as kinetically con-
strained liquids (3), becoming so viscous below
the glass transition that they seem effectively
rigid. By contrast, other theories (4, 5) are built

on the existence of an underlying thermodynamic
phase transition to a state where the molecules
are frozen in well-defined yet disordered posi-
tions. This so-called “amorphous order” cannot
be revealed by canonical static correlation func-
tions, but rather by new kinds of correlations
[i.e., point-to-set correlations or other measures
of local order (6, 7)] that have been detected in
recent numerical simulations (7–9). In these the-
ories, thermodynamic correlations lock together
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Figure 1 | Visualization of the amorphous wall. The underlying grey scale
images have been generated by time-averaging snapshots over 30⌧↵ for
�=0.68 (a) and �=0.76 (b) for a pinned wall. ⌧↵ = 12 s and 274 s for a and
b, respectively. The red circles correspond to the coordinates of the trapped
particles that form the amorphous wall. The spheres at the top of the
images in a and b constitute the pattern whose fast Fourier transform was
fed into the spatial light modulator. Spheres are colour coded according to
the distance between the input coordinates for creating traps and
time-averaged particle positions in units of �L.

presence of the amorphous wall, for two di�erent area fractions
� (Fig. 1). Particles forming the wall appear bright in the time-
averaged images owing to their negligible mobility, and can be easily
identified. We observe that, by and large, the initial set of particle
coordinates and the centres of pinned particles acquired from the
time-averaged images are separated by a distance smaller than the
cage size, which shows that particles forming the amorphous wall
are pinned in an equilibrium configuration of the colloidal liquid.
Interestingly, from the time-averaged images in Fig. 1, we see that
clusters of immobile particles extend further away from the wall for
� =0.76 than for � =0.68, suggesting that the influence of the wall
is felt over longer distances with increasing area fraction.

We first extracted ⇠PTS by calculating the total overlap function,
qc(t , z), at various distances z from the pinned wall17. Although
this analysis was initially developed for three-dimensional systems,
we have used its two-dimensional analogue for our colloidal glass-
former. We divided the field of view into boxes of size 0.25�S, and
computed qc(t ,z) for all boxes that lie at a fixed distance away from
the wall, using the equation

qc(t ,z)=
P

i(z)hni(t)ni(0)iP
i(z)hni(0)i

(1)

where hi correspond to time averaging, i is the box index, ni(t)=1
if the box contains a particle at time t and ni(t) = 0 otherwise.

Figure 2a shows qc(t , z) at various z for � = 0.74. The box size
0.25�S was chosen to be larger than the cage size, ⇠0.14�S, to
avoid spurious overlap fluctuations due to cage rattling. Moreover,
the chosen size is small enough to provide su�cient spatial
resolution for the computation of ⇠PTS and ⇠dyn. By definition, qc(t ,z)
(equation (1)) measures the overlap between configurations at two
di�erent times at a given distance from the wall. As qc(t , z) is
insensitive to particle exchanges, in the limit of long times and
large distances from the wall, it attains a finite asymptotic bulk
value qrand = qc(t ! 1, z ! 1) corresponding to the probability
of occupation of a box. Consistent with simulations17, we observe
that the presence of the wall influences the asymptotic value of
qc(t!1,z)=q1(z), such that q1(z) > qrand (Fig. 2a). In our
experiments, q1(z) is estimated by averaging the saturation value of
the overlap function over a 5–10min time window20. We note that
qc(t ,z) does not saturate for all z within the experimental duration
and hence, to extract ⇠PTS, we consider only those values of z for
which qc(t ,z) attains saturation. As expected, we observe that q1(z)
decreases with z in the vicinity of the wall. This is also evident
from Fig. 2a, where the qc(t , z) profiles for large z overlap almost
completely. We observe that q1(z)�qrand decays exponentially with
z (Fig. 2b and Supplementary Fig. 1), which allowed us to extract
⇠PTS from the relation

q1(z)�qrand =Bexp(�z/⇠PTS) (2)

Having computed ⇠PTS, we computed ⇠dyn from the self part of the
overlap function, qs(t ,z):

qs(t ,z)=
P

i(z)hns
i(t)ns

i(0)iP
i(z)hns

i(0)i
(3)

where, once again, hi correspond to time averaging, i is the box
index, and ns

i(t) = 1 if the box is occupied by the same particle
at time t and ns

i = 0 otherwise17. qs(t , z) is similar to the self-
intermediate scattering function calculated for the wavevector
corresponding to the box size. Unlike qc(t ,z), qs(t ,z) (equation (3))
is sensitive to particle exchanges and reaches zero at long times,
when all the particles undergo a displacement larger than the box
size. Owing to its similarity with the self-intermediate scattering
function, qs(t , z) yields relaxation times ⌧s(z) at di�erent distances
z from the wall17. Owing to the limited temporal resolution in our
experiments, we defined ⌧s(z) as the time taken for qs(t ,z) to decay
to 0.2 (ref. 21). Figure 2c shows qs(t , z) at various z for � = 0.74.
As expected, ⌧s(z) approaches its bulk value ⌧ bulk

s for large z . In
accordance with simulations17,22, we find that the dynamic length
scale ⇠dyn (Fig. 2d) can be extracted from the equation

ln(⌧s(z))= ln(⌧ bulk
s )+Bsexp(�z/⇠dyn) (4)

Having extracted ⇠PTS and ⇠dyn from overlap functions, we
studied the variation of these length scales with the area fraction
� on approaching the glass transition (Fig. 2b,d). We find that,
in concord with simulations17, ⇠PTS grows monotonically with �
(Fig. 3a and Supplementary Fig. 1). This finding constitutes the
first experimental evidence of growing point-to-set correlations
in glass-forming liquids. We note that, as in simulations, the
prefactor B changes with � (Fig. 2b). To ensure that the trend of
growing amorphous order is not influenced by the variation in B,
we defined a second static length scale ⇠PTS�Int = B⇠PTS, which is
also observed to increase with � (ref. 17; Supplementary Fig. 1).
Turning towards the dynamic length scale, ⇠dyn, we observe that
it grows faster than ⇠PTS, as expected17. Most strikingly, however,
⇠dyn exhibits a non-monotonic dependence on � (Fig. 3a). This
result is remarkable, as it is the first experimental observation of
non-monotonicity in dynamic correlations. With the exception of
the numerical results of Kob et al.17, all dynamic length scales
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Figure 1 | Visualization of the amorphous wall. The underlying grey scale
images have been generated by time-averaging snapshots over 30⌧↵ for
�=0.68 (a) and �=0.76 (b) for a pinned wall. ⌧↵ = 12 s and 274 s for a and
b, respectively. The red circles correspond to the coordinates of the trapped
particles that form the amorphous wall. The spheres at the top of the
images in a and b constitute the pattern whose fast Fourier transform was
fed into the spatial light modulator. Spheres are colour coded according to
the distance between the input coordinates for creating traps and
time-averaged particle positions in units of �L.

presence of the amorphous wall, for two di�erent area fractions
� (Fig. 1). Particles forming the wall appear bright in the time-
averaged images owing to their negligible mobility, and can be easily
identified. We observe that, by and large, the initial set of particle
coordinates and the centres of pinned particles acquired from the
time-averaged images are separated by a distance smaller than the
cage size, which shows that particles forming the amorphous wall
are pinned in an equilibrium configuration of the colloidal liquid.
Interestingly, from the time-averaged images in Fig. 1, we see that
clusters of immobile particles extend further away from the wall for
� =0.76 than for � =0.68, suggesting that the influence of the wall
is felt over longer distances with increasing area fraction.

We first extracted ⇠PTS by calculating the total overlap function,
qc(t , z), at various distances z from the pinned wall17. Although
this analysis was initially developed for three-dimensional systems,
we have used its two-dimensional analogue for our colloidal glass-
former. We divided the field of view into boxes of size 0.25�S, and
computed qc(t ,z) for all boxes that lie at a fixed distance away from
the wall, using the equation

qc(t ,z)=
P

i(z)hni(t)ni(0)iP
i(z)hni(0)i

(1)

where hi correspond to time averaging, i is the box index, ni(t)=1
if the box contains a particle at time t and ni(t) = 0 otherwise.

Figure 2a shows qc(t , z) at various z for � = 0.74. The box size
0.25�S was chosen to be larger than the cage size, ⇠0.14�S, to
avoid spurious overlap fluctuations due to cage rattling. Moreover,
the chosen size is small enough to provide su�cient spatial
resolution for the computation of ⇠PTS and ⇠dyn. By definition, qc(t ,z)
(equation (1)) measures the overlap between configurations at two
di�erent times at a given distance from the wall. As qc(t , z) is
insensitive to particle exchanges, in the limit of long times and
large distances from the wall, it attains a finite asymptotic bulk
value qrand = qc(t ! 1, z ! 1) corresponding to the probability
of occupation of a box. Consistent with simulations17, we observe
that the presence of the wall influences the asymptotic value of
qc(t!1,z)=q1(z), such that q1(z) > qrand (Fig. 2a). In our
experiments, q1(z) is estimated by averaging the saturation value of
the overlap function over a 5–10min time window20. We note that
qc(t ,z) does not saturate for all z within the experimental duration
and hence, to extract ⇠PTS, we consider only those values of z for
which qc(t ,z) attains saturation. As expected, we observe that q1(z)
decreases with z in the vicinity of the wall. This is also evident
from Fig. 2a, where the qc(t , z) profiles for large z overlap almost
completely. We observe that q1(z)�qrand decays exponentially with
z (Fig. 2b and Supplementary Fig. 1), which allowed us to extract
⇠PTS from the relation

q1(z)�qrand =Bexp(�z/⇠PTS) (2)

Having computed ⇠PTS, we computed ⇠dyn from the self part of the
overlap function, qs(t ,z):

qs(t ,z)=
P

i(z)hns
i(t)ns

i(0)iP
i(z)hns

i(0)i
(3)

where, once again, hi correspond to time averaging, i is the box
index, and ns

i(t) = 1 if the box is occupied by the same particle
at time t and ns

i = 0 otherwise17. qs(t , z) is similar to the self-
intermediate scattering function calculated for the wavevector
corresponding to the box size. Unlike qc(t ,z), qs(t ,z) (equation (3))
is sensitive to particle exchanges and reaches zero at long times,
when all the particles undergo a displacement larger than the box
size. Owing to its similarity with the self-intermediate scattering
function, qs(t , z) yields relaxation times ⌧s(z) at di�erent distances
z from the wall17. Owing to the limited temporal resolution in our
experiments, we defined ⌧s(z) as the time taken for qs(t ,z) to decay
to 0.2 (ref. 21). Figure 2c shows qs(t , z) at various z for � = 0.74.
As expected, ⌧s(z) approaches its bulk value ⌧ bulk

s for large z . In
accordance with simulations17,22, we find that the dynamic length
scale ⇠dyn (Fig. 2d) can be extracted from the equation

ln(⌧s(z))= ln(⌧ bulk
s )+Bsexp(�z/⇠dyn) (4)

Having extracted ⇠PTS and ⇠dyn from overlap functions, we
studied the variation of these length scales with the area fraction
� on approaching the glass transition (Fig. 2b,d). We find that,
in concord with simulations17, ⇠PTS grows monotonically with �
(Fig. 3a and Supplementary Fig. 1). This finding constitutes the
first experimental evidence of growing point-to-set correlations
in glass-forming liquids. We note that, as in simulations, the
prefactor B changes with � (Fig. 2b). To ensure that the trend of
growing amorphous order is not influenced by the variation in B,
we defined a second static length scale ⇠PTS�Int = B⇠PTS, which is
also observed to increase with � (ref. 17; Supplementary Fig. 1).
Turning towards the dynamic length scale, ⇠dyn, we observe that
it grows faster than ⇠PTS, as expected17. Most strikingly, however,
⇠dyn exhibits a non-monotonic dependence on � (Fig. 3a). This
result is remarkable, as it is the first experimental observation of
non-monotonicity in dynamic correlations. With the exception of
the numerical results of Kob et al.17, all dynamic length scales
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1 2 
Schematic diagram for block analysis 

L 
In colloidal experiments, only portion of the system is imaged using microscope and thus that portion is already in 
grand canonical ensemble. This is ideal for block analysis.  

static and dynamic length scales can be obtained in one go. Static length scale using PTS method is very 
computationally expensive and not easy to implement at low temperatures.  

 

LB = L/n

Phys. Rev. Lett, 119 205502 (2017).  



Models and Methods: 
3dKA – 80:20 binary mixture.  
L-J potential, 

3dR10 – A 50:50 binary mixture interacting 
in three dimensions via the potential 

3dIPL-  This model is a variant of the 
3dKA model with purely repulsive 
pairwise interaction 

3dHP- This is 50:50 binary mixture of 
harmonic spheres with diameter ratio of 
1.4.     =0.82. 



3dPOL- This is a polydisperse mixture of soft spheres with the diameter σ. The 
spheres chosen from a Gaussian distribution. The polydispersity (∆) is defined as 
 
 
 
 

Here ∆ = 8%. 
 

The interaction potential is 



Self Overlap Correlation: 

The dynamical susceptibility associated with 
blocks of size  

Phys. Rev. Lett, 119 205502 (2017).  



3dKA 

S. Karmakar, C. Dasgupta and S. Sastry Proc. Natl. 
Acad.Sci. U.S.A. 106, 3675 (2009) 
 

Block size dependence of       and finite size scaling: 



3dR10 

3dIPL 



3dHP 

3dPolydisperse 



Scaling function and the scaling exponent: 
 

Scaling form we have used in our analysis 

where 

 Dependence on          should go away. goes to const at   

For small          or                  one expect the dependence of             on           should go away  

  Which implies the scaling function             should be proportional to   



3dKA 3dR10 

3dIPL 



3dHP 3dpolydisperse 

 Here             which seems to be universal. This results would not have been obtained 
without this proposed method of block analysis 



Static length scale 



The statistics of      and the calculation of the static length Scale    

Why the variation of the average      with block size is very weak? 

Why the variance of       is related to the static length scale? 

No clear answer. Need further understanding 

Phys. Rev. Lett, 119 205502 (2017).  



3dKA 

3dR10 



3dIPL 

3dHP 



3dpolydisperse 



•  We present an efficient method which can be used in simulations as 
well as in colloidal experiments on glass forming liquids to obtain both 
static and dynamic length scale. 

•  This methods capturing all the important fluctuations in the system 
which is not possible in simulations in the canonical ensemble for 
varying system sizes. 

•  Block analysis also provides extremely well averaged results without 
any additional computational overhead in simulation. 

•  It can be implemented very easily in colloidal glass experiments. 
 
 
 

CONCLUSION: 

Phys. Rev. Lett, 119 205502 (2017).  


