Universality properties of steady driven coagulation with collisional fragmentation

C. Connaughton (Warwick University, UK)

- A. Dutta (Universite de Strasbourg, France)
- R. Rajesh (Institute of Mathematical Sciences, Chennai, India)
- N. Siddharth (Institute of Mathematical Sciences, Chennai, India)
- O. Zaboronski (Warwick University, UK)
- arXiv:1710.01875

The model

Mass measured in terms of smallest mass m₀ such that mass is an integer

Coagulation

Coagulation conserves mass but decreases number of particles

Collisional fragmentation

 $m_1+m_2 \rightarrow (m_1+m_2)$ particles of mass m_0

Collision kernel K(m₁,m₂): Example

• Ballistic transport: $K(m_1, m_2) \propto (R_1 + R_2)^{d-1} \sqrt{v_1^2 + v_2^2}$ = $(m_1^{1/d} + m_2^{1/d})^{d-1} \sqrt{\frac{1}{m_1} + \frac{1}{m_2}}$

• Homogeneous:
$$K(hm_1, hm_2) = h^{\frac{d-1}{d} - \frac{1}{2}} K(m_1, m_2)$$

$$m_1 \gg m_2$$
: $K(m_1, m_2) \sim \frac{m_1^{\frac{d-1}{d}}}{\sqrt{m_2}} \sim m_1^{\nu} m_2^{\mu}$

Collision kernel K(m₁,m₂)

- Will consider kernel: $K(m_1, m_2) = \frac{1}{2}(m_1^{\mu}m_2^{\nu} + m_1^{\nu}m_2^{\mu})$
- Homogeneity exponent: $\beta = \mu + v$
- Locality exponent: $\theta = |v \mu|$

- Question: What is the steady state mass distribution?
- Model parameters: β , θ , λ

Example

K. Wada, Astrophys. J. (2009)

Example

Aggregation

Fragmentation

Tom et al, J. Chem. Phys. (2017)

Primary motivation: Rings of Saturns

Assumptions

- Mean field treatment: assume well mixed system so that spatial inhomogeneities may be ignored
- Smoluchowski rate equation

$$\frac{dN(m,t)}{dt} = \frac{1}{2} \sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} N(m_1,t)N(m_2,t)K(m_1,m_2)\delta(m_1+m_2-m) - (1+\lambda) \sum_{m_1=1}^{\infty} N(m_1,t)N(m,t)K(m_1,m) + \frac{\lambda}{2}\delta_{m,1} \sum_{m_1=1}^{\infty} \sum_{m_2=1}^{\infty} N(m_1,t)N(m_2,t)K(m_1,m_2)(m_1+m_2).$$

Approximate solution

- Ballistic transport: $K(m_1, m_2) = (m_1^{1/d} + m_2^{1/d})^{d-1} \sqrt{\frac{1}{m_1} + \frac{1}{m_2}}$ • β : $K(hm_1, hm_2) = h^{\frac{d-1}{d} - \frac{1}{2}} K(m_1, m_2)$ • $m_1 \gg m_2$: $K(m_1, m_2) \sim \frac{m_1^{\frac{d-1}{d}}}{\sqrt{m_2}} \sim m_1^{\nu} m_2^{\mu}$ $\frac{d \mu \nu}{3} - \frac{1}{2} \frac{2}{3} \frac{1}{6} \frac{7}{6}$
- Difficult to solve with $\theta = 7/6$
- Instead solve with $\theta=0$ keeping $\beta=1/6$ the same

Rings of Saturn

Excellent fit. λ is a fitting parameter

Result

Discussion: rings of Saturn

r

Discussion: rings of Saturn

Discussion: driven dissipative system

Outlook

Connaughton et al, PRL (2012)

- Stability of solution?
- Non locality leads to instability and onset of oscillations
- Effect of space: oscillations in space?
- Effect of stochasticity?

Jet propulsion lab, caltech