2-phase thermodynamic (2PT) model for efficient entropy calculation in liquid state

> Prabal K Maiti Center for Condensed Matter Theory Department of Physics, IISc, Bangalore, Email: maiti@physics.iisc.ernet.in

> > http://www.physics.iisc.ernet.in/~maiti

With Shiang-Tai Lin (NTU), Bill Goddard (Caltech) and Hemant Kumar, Chandan Dasgupta and Ajay Sood (IISc)

Funding DST, India

Thermodynamics of Crystal

Atoms vibrating around its equilibrium position

Debye model

S(υ)

Harmonic Approximation (Quantum) : 1PT method

For crystals: each mode is a harmonic oscillator

Partition function of a harmonic oscillator

$$\varepsilon_n = (n + \frac{1}{2})h\upsilon \qquad q_{HO}^Q(\upsilon) = \sum_n \exp(-\beta\varepsilon_n) = \frac{\exp(-\beta h\upsilon/2)}{1 - \exp(-\beta h\upsilon/2)}$$

The partition function of the system is the sum from all the oscillators

$$\ln Q = \int_0^\infty d\upsilon S(\upsilon) \ln q_{HO}(\upsilon)$$

Waighting functions

Berens et al JCP,79 2375 (83)

Thermodynamic properties

Harmonic Approximation (Classical) : 1PT method

For crystals: each mode is a harmonic oscillator

Partition function of a harmonic oscillator

$$\varepsilon_n = (n + \frac{1}{2})h\upsilon$$
 $q_{HO}^C(\upsilon) = \sum_n \exp(-\beta \varepsilon_n) = 1/\beta h\upsilon$

The partition function of the system is the sum from all the oscillators

$$\ln Q = \int_0^\infty d\upsilon S(\upsilon) \ln q_{HO}(\upsilon)$$

Thermodynamic properties

Weighting functions

$$W_E^C(\upsilon) = 1$$

$$W_{S}^{C}(\upsilon) = 1 - \ln \beta h \upsilon$$

 $W_A^C(\upsilon) = \ln \beta h \upsilon$

$$W_{C_{\nu}}^{C}(\upsilon) = 1$$

$$(\partial I^{-})_{N,V} = \int_{0}^{\infty} \operatorname{Ref. energy}_{Ref. energy}$$

$$S = k \ln Q + \beta^{-1} \left(\frac{\partial \ln Q}{\partial T} \right)_{N,V} = k_B \int_{0}^{\infty} d\upsilon S(\upsilon) W_S(\upsilon)$$

$$A = V_0 - \beta^{-1} \ln Q = V_0 + \beta^{-1} \int_{0}^{\infty} d\upsilon S(\upsilon) W_A(\upsilon)$$

$$(\partial E) = \int_{0}^{\infty} (\partial E) d\upsilon S(\upsilon) W_A(\upsilon)$$

 $E = V_0 + T\beta^{-1} \left(\frac{\partial \ln Q}{\partial T} \right) = V_0 + \beta^{-1} \int_{0}^{\infty} d\upsilon S(\upsilon) W_E(\upsilon)$

$$C_{\nu} = \left(\frac{\partial E}{\partial T}\right)_{N,V} = k_B \int_0^\infty d\nu S(\nu) W_{C_{\nu}}(\nu)$$

Berens et al JCP,79 2375 (83)

The Normal Modes from VAC

• The *S(v)* calculated from the Fourier transform of VAC

$$S(\upsilon) = \frac{2}{kT} \lim_{\tau \to \infty} \int_{-\tau}^{\tau} \sum_{j=1}^{N} \left\langle v_j(0) \cdot v_j(t) \right\rangle e^{-i2\pi \upsilon t} dt$$

Integration of S(v) gives the total degrees of freedom

$$\int_0^\infty S(v) dv = 3N$$
 N: total number of atoms

• Zero frequency *S*(0) gives diffusivity

$$D = \frac{kT}{12mN}S(0)$$

Lin, S. T.; Blanco, M.; Goddard, W. A.. J. Chem. Phys. 2003, 119, 11792.

Testing with the LJ System

- Intermolecular potential $V(\mathbf{r})$ $V(r) = 4\varepsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right] \qquad \begin{array}{c} 0 \\ -\varepsilon \end{array} \right]$
- Phase diagram
 - critical point
 - $T_c^* = 1.316 \pm 0.006$
 - $\rho_c^* = 0.304 \pm 0.006$
 - triple point

 $T_{tp}^* \approx 0.69$

Lennard-Jones Potential $V(\mathbf{r})$ $r = \sigma$ r

T - ρ diagram for Lennard Jones Fluid

The Density of States

Lin, S. T.; Blanco, M.; Goddard, W. A.. J. Chem. Phys. 2003, 119, 11792.

Example: Lennard-Jones particles

Velocity Autocorrelation

 $T^*=1.1$ $\rho^*=0.05$ gas $\rho^*=0.40$ instable system $\rho^*=0.70$ metastable liquid $\rho^*=0.85$ liquid $\rho^*=1.10$ crystal

Density of States

The Density of States Distribution S(v)

The 2PT idea: Liquid \equiv Solid+Gas

- Decompose liquid S(v) to a gas and a solid contribution
- S(0) attributed to gas phase diffusion
- Gas component contains anharmonic effects
- Solid component contains quantum effects
- Two-Phase Thermodynamics Model (2PT)

The 2PT Method

Lin, S. T.; Blanco, M.; Goddard, W. A.. J. Chem. Phys. 2003, 119, 11792.

- The basic idea
- •The DoS
- Thermodynamic properties
 - •The gas component
 - VAC for hard sphere gas
 - •DoS for hard sphere gas

$$S(\upsilon) = S^{gas}(\upsilon) + S^{solid}(\upsilon)$$
$$P = \int_{0}^{\infty} d\upsilon S^{s}(\upsilon) W_{P}^{HO}(\upsilon) + \int_{0}^{\infty} d\upsilon S^{g}(\upsilon) W_{P}^{g}(\upsilon)$$

$$c^{HS}(t) = \frac{3kT}{m} \exp(-\alpha t)$$

 $\alpha(T, \rho^{HS}, \sigma^{HS})$: friction coefficient

• Two unknowns (α and N^{gas}) or (s_o and f)

$$S^{HS}(\upsilon) = \frac{12N^{gas}\alpha}{\alpha^{2} + 4\pi^{2}\upsilon^{2}} = \frac{s_{0}}{1 + \left[\frac{\pi s_{0}\upsilon}{6fN}\right]^{2}} \qquad N^{gas} = fN$$
$$s_{0} = S^{HS}(0) = \frac{12N^{gas}}{\alpha}$$

Determining s_o and f from MD Simulation

- s_0 (DoS of the gas component at v=0)
 - completely remove S(0) of the fluid
 - f (gas component fraction)
 - T $\rightarrow \infty$ or $\rho \rightarrow 0$: f $\rightarrow 1$ (all gas)
 - • $\rho \rightarrow \infty$: f $\rightarrow 0$ (all solid)

•
$$s_0 = S(0), S^{solid}(0) = 0$$

• one unknown
$$\sigma^{HS}$$

$$f = \frac{D(T,\rho)}{D_0^{HS}(T,\rho;\sigma^{HS})}$$

$$D(T,\rho) = \frac{kTS(0)}{12mN}$$

$$D_0^{HS}(T,\rho;\sigma^{HS}) = \frac{3}{8}\frac{1}{\rho\sigma^{HS^2}}(\frac{kT}{\pi m})^{1/2}$$
(Chapman - Enskog)

- σ^{HS} (hard sphere radius for describing the gas molecules)
 - gas component diffusivity should agree with statistical mechanical predictions at the same T and ρ
 - gas component diffusivity from MD simulation

$$D^{HS}(T, f\rho) = \frac{kTs_0}{12mfN}$$

• HS diffusivity from the Enskog theory

$$D^{HS}(T, f\rho) = D_0^{HS}(T, f\rho; \sigma^{HS}) \frac{4fy}{z(fy) - 1} \qquad \qquad y = \frac{\pi}{6} \rho \sigma^{HS^3}$$
$$z(y) = \frac{1 + y + y^2 - y^3}{(1 - y)^3}$$

At Last...

• A universal equation for f

$$2\Delta^{-9/2}f^{15/2} - 6\Delta^{-3}f^{5} - \Delta^{-3/2}y^{7/2} + 6\Delta^{-3/2}f^{5/2} + 2f - 2 = 0$$

normalized diffusivity:
$$\Delta(T, \rho, m, s_0) = \frac{2s_0}{9N} (\frac{\pi kT}{m})^{1/2} \rho^{1/3} (\frac{6}{\pi})^{2/3}$$

• Graphical representation

Entropy

- Overestimate entropy for low density gases
- Underestimate entropy for liquids
- Accurate for crystals

- Accurate for gas, liquid, and crystal
- Accurate in metastable regime
- Quantum Effects most important for crystals (~1.5%)

Gibbs Free Energy

- Underestimate free energy for low density gases
- overestimate entropy for liquids
- Accurate for crystals

- Accurate for gas, liquid, and crystal
- Accurate in metastable regime

Density of States (Normal Modes) of

Water

• The DoS of liquid water

2PT for Molecular Systems

• Decomposition of DoS to translation, rotation, and

intramolecular vibrations

$$S(\upsilon) = S_{tran}(\upsilon) + S_{rot}(\upsilon) + S_{vib}(\upsilon)$$

Applying 2PT to trans and rot components

$$S_{tran}(\upsilon) = S_{tran}^{gas}(\upsilon) + S_{tran}^{solid}(\upsilon)$$

$$S_{rot}(\upsilon) = S_{rot}^{gas}(\upsilon) + S_{rot}^{solid}(\upsilon)$$

Applying proper quantum statistics to the corresponding components

S. T. Lin, P. K. Maiti and W. A. Goddard, J. Phys. Chem. B, 2010, 114, 8191-8198.

The DoS of Liquid Water

$$S(\upsilon) = S_{trn}(\upsilon) + S_{rot}(\upsilon) + S_{vib}(\upsilon)$$

The rotational density of state is determined from the angular velocity

$$S_{rot}(\upsilon) = \beta \sum_{l=1}^{M} \sum_{k=1}^{3} \lim_{\tau \to \infty} \frac{I_{l}^{k}}{\tau} |\int_{-\tau}^{\tau} \omega_{l}^{k}(t) e^{-i2\pi \upsilon t} dt|^{2}$$

The atomic velocity was decomposed into translation, rotation, and vibration components at every step

$$v_{j}^{k}(t) = v_{j,tm}^{k}(t) + v_{j,rot}^{k}(t) + v_{j,vib}^{k}(t)$$

The angular velocity is determined from angular momentum and moment of inertia tensor

$$\vec{L} = \sum m_j (\vec{r}_j \times \vec{v}_j) = \underline{I}\vec{\omega}$$

The DoS of Liquid Water

S. T. Lin, P. K. Maiti and W. A. Goddard, J. Phys. Chem. B, 2010, 114, 8191-8198.

2PT Entropy for Liquid Water at STP

	water models					
	F3C	SPC	SPC/E	TIP3P	TIP4P-Ew	
S _{trn} (2PT)	50.59±0.25	53.05±0.14	49.87±0.14	55.59±0.15	49.79±0.07	
S _{rot} (2PT)	11.54±0.06	12.03±0.03	10.41±0.04	12.90±0.04	9.53±0.07	
S _{vib} (2PT)	0.04±0.00	-	-	-	-	
S(2PT)	62.18 ±0.30	65.09 ±0.13	60.28 ±0.16	68.49 ±0.14	59.32 ±0.12	
S(FD)	-	65.10±3.35	64.48±3.35	70.86±3.35	-	
S(FEP)	-	68.20	63.36	72.58	63.62	
S(expt) ^e			69.95±0.03			

S. T. Lin, P. K. Maiti and W. A. Goddard, J. Phys. Chem. B, 2010, 114, 8191-8198.

2PT Entropy of Water along VLE

S. T. Lin, P. K. Maiti and W. A. Goddard, J. Phys. Chem. B, 2010, 114, 8191-8198.

Convergence and Efficiency

S. T. Lin, P. K. Maiti and W. A. Goddard, J. Phys. Chem. B, 2010, 114, 8191-8198.

Water flow inside single nanotube and bundle

Free Energy of Confined Water

CNT	E(Kcal/mol)	TS _{trn} (Kcal/mol)	TS _{rot} (Kcal/mol)	E-TS
(5,5)	-8.26	2.97	2.16	-13.39(0.04)
(6,6)	-8.89	3.84	1.67	-14.40(0.04)
(7,7)	-8.67	4.04	1.42	-14.13(0.01)
(8,8)	-9.38	3.67	1.12	-14.17(0.01)
BULK	-9.45	4.02	0.93	-14.40(0.005)

Loss in energy is compensated by the gain in rotational entropy.

Kumar et. al. JCP, 134, 124105 (2011) Kumar et.al. Molecular Simulation, 41, 504-511 (2015),

Summary

- Determines absolute value of entropy from single MD trajectory. Entropy converges with 20 ps trajectory
- Includes quantum corrections
- Allows calculation of entropy of each individual molecule in the system
- Gain in rotational entropy allow water entry inside hydrophobic pore of the tube
- Both entropy and energy of transfer decrease with increasing temperature, keeping the free energy of transfer nearly constant..