Fixation of a beneficial mutation

Kavita Jain
JNCASR, Bangalore

Plan

- Introduction to a basic quantity
- Specific question, recent result

Basic Evolutionary Processes

- Natural selection
- Mutation
- Stochasticity (random genetic drift)
- Population structure (mating systems, ploidy, migration,...)

Basic Evolutionary Processes

- Natural selection
- Mutation
- Stochasticity (random genetic drift)
- Population structure (mating systems, ploidy, migration,...)

Random Genetic Drift

Each individual in the microbial population divides

But resources are limited!
To maintain a finite population size, sample offspring with
probability \propto fitness of parent

Beneficial Mutation Spreads

Beneficial Mutation Lost

Moral (Kimura 1962)

- Beneficial mutations can get lost
- Deleterious mutations can spread

Fixation Probability

- What is the chance that the beneficial mutation spreads?
$P_{\mathrm{fix}}=\operatorname{Prob}($ population in the absorbing states with all \bullet)
- Essential building block for complex stochastic models of adaptation

Backward Kolmogorov equation (van Kampen 1997)
$-\frac{\partial}{\partial t_{0}} P\left(x, t \mid x_{0}, t_{0}\right)=[\underbrace{a\left(x_{0}\right)}_{\text {Determinisicic }} \frac{\partial}{\partial x_{0}}+\underbrace{\frac{x_{0}\left(1-x_{0}\right)}{2 N}}_{\text {Binomial sampling }} \frac{\partial^{2}}{\partial x_{0}^{2}}] P\left(x, t \mid x_{0}, t_{0}\right)$
Branching Process (Harris 1963)

Origin and Maintenance of Sex is... (Otto \& Lenormand, 2002)

"one of the most enduring puzzles in evolutionary biology"
Why is sexual reproduction ubiquitous?

- Requires time and energy to find a mate
- Risky to produce an offspring by mixing genes (diseases)
- Two-fold cost of sex

Fisher-Muller Argument (~ 1930s)

Sexual population: favorable mutations can be combined

Asexual population: must wait for the next 'hit'

Qualitative Argument \rightarrow Quantitative Analysis

Beneficial mutation less likely to spread in an asexual population

$$
P_{\mathrm{fix}}(\text { asex })<P_{\mathrm{fix}}(\text { sex })
$$

How much smaller?

RelativeFixProb

Summary

- $P_{\text {fix }}$: essential building block for complex stochastic models of adaptation Need analytical expressions !
- Several other factors need to be accounted for; possible to build upon this

