Distribution of Waiting Time in Traffic Congestion

Subinay Dasgupta

Department of Physics, University of Calcutta

Collaborator : Sitabhra Sinha (IMSc, Chennai)
Funded by ITRA (Media Lab Asia)

ISPCM, ICTS Bangalore (February 16, 2018)

WHAT IT is ALL ABOUT

Congestion in urban traffic flow is characterised by waiting time distribution : probability that a car is stuck up for a time τ

WHAT IT is ALL ABOUT

Congestion in urban traffic flow is characterised by waiting time distribution : probability that a car is stuck up for a time τ

WHAT IT is ALL ABOUT

Congestion in urban traffic flow is characterised by waiting time distribution : probability that a car is stuck up for a time τ

OUTLINE

OUTLINE

- Analysis of real-life data for traffic congestion
- Model explaining the results. Based on aggressiveness of the drivers at traffic signals

AVAILABLE DATA

GPS data of ~ 1000 taxis in Delhi, Bengaluru, Mumbai, for several months in 2013-2014

Collaboration with IIT Madras (Prof. K. Jagannathan) For each vehicle : time, latitude, longitude, velocity

CONGESTION TIME

When a car has speed $<10 \mathrm{kmph}$ for τ secs, we call it a congestion time of τ secs

Compute the statistics of this τ for all cars, on all days to obtain the probability distribution function $P(\tau)$

RESULT FOR CONGESTION TIME

VALUE OF EXPONENT

The value of exponent depends on the choice of the threshold velocity.

The limiting value of the exponent for small threshold velocity seems to be between 2 to 3 .

MORE DATA

Motorway in Cologne, Germany

Krause, Habel, Guhr, Schreckenberg (2017)

$$
P(\tau) \sim \tau^{-\alpha} \alpha=1.5
$$

Fig. 3: (Colour online) Left: PDF of traffic congestion durations T for $v_{\mathrm{jam}}=50 \mathrm{~km} / \mathrm{h}$ in double logarithmic plot. Symbols indicate different cross-sections, the black solid line is the average over cross-sections 3 to 33 . For comparison, power laws $T^{-\gamma}$ with exponent $\gamma=3 / 2$ (upper dashed line) and $\gamma=2$ (lower dashed line) are shown. Right: The average result (black solid line) changes only slightly for data reduced to the first three months (crosses), or for reduced $v_{\mathrm{jam}}=20 \mathrm{~km} / \mathrm{h}$ (dotted line).

MODEL

MODEL

Consider a bottleneck. Only one car can pass through.

The most aggressive driver will pass

MODEL

Consider a bottleneck.
Only one car can pass through.
The most aggressive driver will pass

HYPOTHESIS:
can be quantified by an attribute A

Aggressiveness
depends only on
(i) the intrinsic nature
(ii) the duration of waiting

MODEL

MODEL

HYPOTHESIS:

Aggressiveness (for i-th person waiting for time τ)

$$
A_{i}=N_{i} \tau^{\sigma}
$$

$\star N_{i}$ varies randomly from person to person (uniformly distributed between 0 and 1)
$\star \sigma$ is the same for all persons

MODEL

HYPOTHESIS:

Aggressiveness (for i-th person waiting for time τ)

$$
A_{i}=N_{i} \tau^{\sigma}
$$

$\star N_{i}$ varies randomly from person to person (uniformly distributed between 0 and 1)
$\star \sigma$ is the same for all persons
This gives (numerical, analytic) $P(\tau) \sim \tau^{-\alpha} \quad \alpha=\sigma+1$
(probability of
$\sigma=1$ to 2 in India $\& \sigma=0.5$ in Germany congestion time)

DETAILED ALGORITHM

DETAILED ALGORITHM

- Start at time $t=0$ with a queue of L cars with $N_{1}, N_{2}, \ldots N_{L}$ drawn from a uniform distribution in $(0,1)$.

DETAILED ALGORITHM

- Start at time $t=0$ with a queue of L cars with $N_{1}, N_{2}, \ldots N_{L}$ drawn from a uniform distribution in $(0,1)$.

- At each update $t \rightarrow t+1$, the car with highest A goes off and is replaced by another car. A fixes priority

DETAILED ALGORITHM

- Start at time $t=0$ with a queue of L cars with $N_{1}, N_{2}, \ldots N_{L}$ drawn from a uniform distribution in $(0,1)$.

- At each update $t \rightarrow t+1$, the car with highest A goes off and is replaced by another car. A fixes priority
- For the removed car, waiting time is $\tau=t-t_{0}$, where t_{0} is the timestep at which it was introduced. The new car has an N value $\in(0,1)$ with $t_{0}=t$

DETAILED ALGORITHM

- Start at time $t=0$ with a queue of L cars with $N_{1}, N_{2}, \ldots N_{L}$ drawn from a uniform distribution in $(0,1)$.

- At each update $t \rightarrow t+1$, the car with highest A goes off and is replaced by another car. A fixes priority
- For the removed car, waiting time is $\tau=t-t_{0}$, where t_{0} is the timestep at which it was introduced. The new car has an N value $\in(0,1)$ with $t_{0}=t$

Note : The number of cars queued up remains the same with time.

OBSERVATIONS

OBSERVATIONS

\star Choice of functional forms other than $A_{i}=N_{i} \tau^{\sigma}$ does not reproduce the observed trend $P(\tau) \sim \tau^{-\alpha}$

OBSERVATIONS

\star Choice of functional forms other than $A_{i}=N_{i} \tau^{\sigma}$ does not reproduce the observed trend $P(\tau) \sim \tau^{-\alpha}$
*Similar result, if the total number of cars vary randomly about a mean value.

OBSERVATIONS

Choice of functional forms other than $A_{i}=N_{i} \tau^{\sigma}$ does not reproduce the observed trend $P(\tau) \sim \tau^{-\alpha}$

Similar result, if the total number of cars vary randomly about a mean value.

* A variant of the model with multiple layer also gives similar result

Replace removed car
by the one with the largest A in the row just behind

SUMMARY

SUMMARY

HYPOTHESIS

¿ In a traffic bottleneck, only the most aggressive driver passes through at a time.
\star The aggressiveness can be quantified as $A_{i}=N_{i} \tau^{\sigma}$ where $N_{i} \in(0,1)$ varies randomly from person to person, σ is the same for all, and τ is the time for which it is stranded.

SUMMARY

HYPOTHESIS

¿ In a traffic bottleneck, only the most aggressive driver passes through at a time.
\star The aggressiveness can be quantified as $A_{i}=N_{i} \tau^{\sigma}$ where $N_{i} \in(0,1)$ varies randomly from person to person, σ is the same for all, and τ is the time for which it is stranded.

THIS GIVES : $P(\tau) \sim \tau^{-\alpha}$ with $\alpha=\sigma+1$ which agrees with available empirical data, with $\sigma=1$ to 2 in India \& $\sigma=0.5$ in Germany. Does σ depend on country?

CAUTION

Data for 3 cities in India (in 2013) and 1 city in Germany (in 2016) show that probability distribution of congestion time is $P(\tau) \sim \tau^{-\alpha}$

Data for many other places need to be analysed.

Thank you for your attention

