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Introduction

Preamble

u(x+ r)� u(x) ⇡ ru · r

r

Dispersion, deformation and break-up of 
immiscible drops is an important problem.

Emulsion processes require detailed 
understanding of single droplet dynamics.

Goal: Elucidate and investigate deformation 
and break-up of small droplets. 

Approach: Direct numerical simulations of a 
model simple enough to allow some analytical 
calculations. 

Walstra, Chem. Eng. Sci. (1993)
Windhab, et al., Chem. Eng. Sci. (2005)
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Equations of Motion

The droplet

Maffetone and Minale, J. Non-Newtonian Fluid Mech. (1998)

Shape and orientation are determined by a second-order symmetric positive-definite tensor whose eigenvectors 
are the semi-axes of the drop and eigenvalues the squared-lengths of those axes.

3

low, so that hydrodynamic interactions between drops are negliglible and attention can
be directed to the dynamics of a single drop.
The shape and the orientation of the drop are described by a second-rank symmetric

positive-definite tensor M, whose eigenvectors are the semi-axes of the drop and whose
eigenvalues m2

1 ! m2
2 ! m2

3 yield the squared lengths of the same semi-axes. The centre
of mass of the drop evolves as a tracer, while the Lagrangian evolution of M is given by
the following equation:

Ṁ = GM + MG⊤ −
f1(µ)

τ
[M − g(M)I ], (2.1)

where G = f2(µ)S + Ω is an effective velocity gradient; Ω = [∇u − (∇u)⊤]/2 and
S = [∇u+(∇u)⊤]/2 are the vorticity and rate-of-strain tensors evaluated at the centre
of mass of the droplet, respectively. Note that here (∇u)ij = ∂jui. The coefficients f1(µ)
and f2(µ) depend on the ratio µ of the viscosity of the drop and that of the external fluid
and were chosen in such a way as to match theoretical predictions for small capillary
numbers (Maffettone & Minale 1998):

f1(µ) =
40(µ+ 1)

(2µ+ 3)(19µ+ 16)
, f2(µ) =

5

2µ+ 3
. (2.2)

Here the capillary number is defined as Ca = λτ , where λ is the Lyapunov exponent of
the flow. Note that f2(1) = 1 and hence, for µ = 1, G = ∇u. The last term in (2.1)
describes the capillary relaxation to the spherical shape with a time scale τ . Thanks to an
appropriate choice of the function g(M), the same term enforces that detM is constant
in time and hence the volume of the drop is preserved. The function g(M) has the form
g(M) = 3IIIM/IIM , where IIM and IIIM are the second and third invariants of M, i.e.
IIM = [(I : M)2 − I : M2]/2 and IIIM = detM.
This Section provides insight into the statistics of drop deformation and breakup in

three-dimensional homogeneous isotropic turbulence. We obtain such a turbulent flow by
performing direct numerical simulations of the three-dimensional Navier–Stokes equation

∂tu+ u ·∇u = −∇p+ ν∆u + F (2.3)

for the velocity field u (and pressure p) augmented with the incompressibility condition
∇ ·u = 0. We use the standard, fully de-aliased pseudo-spectral method on a 2π-periodic
cubic domain with 5123 collocation points. The flow is driven to a non-equilibrium steady
state by an external force F with a fixed energy input ϵ. Our choice of ϵ and kinematic
viscosity ν ensures a Taylor-scale Reynolds number Reλ ≈ 111.
In order to study the deformation of droplets in a turbulent flow, we seed our turbulent,

statistically steady, flow with Lagrangian tracers and follow their trajectories, by using
a bilinear-interpolation scheme to obtain the tracer velocity from the Eulerian velocity
evaluated from Eq. (2.3); such trajectories define the motion of the center mass of the
droplets.
Finally, we use the fluid velocity gradients along the trajectories to calculate λ which

is used to define our capillary numbers. We obtain a value of λ such that λτη = 0.15
(where τη is the Kolmogorov time-scale associated with the flow), consistent with earlier
results (Bec et al. 2006). We refer the reader to James & Ray (2017) for a more detailed
description of our numerical procedure. (Note that Biferale et al. (2014) defined the
capillary number in terms of the root mean square of ∂xux instead of λ. However, this
fact only leads to a different proportionality factor in the definition of Ca, since in our
case

√

⟨(∂xux)2⟩ = 6.8λ.)
Equation (2.1) is integrated by using the second-order Adam–Bashforth method with
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Fig. 1. Time-integrated p.d.f. of (a) the largest eigenvalue of M and (b) the ratio of the largest
and the smallest eigenvalue of M for µ = 1, α = 103, and different values of Ca. For this
value of µ, Cac = 0.23. The p.d.f.s are artificially translated in order to render their power-law
behaviours more easily visible.

same time step as for the Navier–Stokes equation. The integration of (2.1) must preserve
the positive-definite character of M. This is achieved by adapting to (2.1) the Cholesky-
decomposition method proposed by Vaithianathan & Collins (2003) (see the appendix for
the details). Unless otherwise stated, the initial condition is M(0) = I . As in Biferale et al.
(2014), it is assumed that drops break when their aspect ratio |m1/m3| exceeds a
threshold value α. In view of the fact that we are only interested in the dynamics up to
the first breakup and do not consider secondary breakup events, drops are removed from
the flow as soon as they break. In the simulations presented below, the initial number of
drops N(0) = 106.
Following Biferale et al. (2014), we describe the deformation of a drop in terms of the

statistics of m2
1, i.e. the squared length of the semi-major axis. Let p(m2

1, t) be the p.d.f.
of m2

1 and P(m2
1) ≡

∫∞

0 p(m2
1, t)dt its time integral. Biferale et al. (2014) showed that

P(m2
1) behaves as a power law for values of m2

1 smaller than its maximum value (it is
easy to check that the conditions m2

1 ! m2
2 ! m2

3, m
2
1m

2
2m

2
3 = 1 and |m1/m3| " α imply

that m2
1 is bounded and, more precisely, m2

1 " α4/3). The slope increases as a function
of Ca for small Ca and saturates to −1 when Ca exceeds a critical value Cac, which for
µ = 1 was found to be Cac = f1(µ)/2. Figure 1(a) shows that the behaviour of P(m2

1)
is accurately reproduced in our simulations. The power law is even clearer when the p.d.f
of m2

1/m
2
3 is considered, because the condition for breakup is expressed in terms of the

aspect ratio of drops (figure 1(b)).
We note, however, that the possibility of breakup renders drop dynamics a non-

stationary process. Hence the p.d.f. of m2
1 is expected to vary in time, as is confirmed

in figure 2(a). Moreover, at long times p(m2
1, t) reaches an asymptotic shape, but does

not show any definite power-law behaviour. In figure 2(a), the p.d.f.s are translated
vertically in order to facilitate the comparison at different times. In fact the fraction of
drops surviving at time t, N(t)/N(0) ≡

∫

p(m2
1, t)dm

2
1, decays exponentially in time, the

decay rate growing rapidly when Ca exceeds Cac (figure 2(b)). The power-law behaviour
observed by Biferale et al. (2014) is thus recovered only when the time-integrated p.d.f
is considered; indeed the distributions shown in Biferale et al. (2014) were obtained by
averaging over both the Lagrangian trajectories and time.
Since the dynamics of drops is not statistically stationary, P(m2

1) may depend on the
initial shape of drops, namely on the value of the aspect ratio at time t = 0. We thus
performed simulations in which the initial shape tensor is M(0) = diag(ρ0, 1, ρ
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Break-up Criterion: Ratio of the largest to the smallest eigenvalues greater than some threshold value. 
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S = [∇u+(∇u)⊤]/2 are the vorticity and rate-of-strain tensors evaluated at the centre
of mass of the droplet, respectively. Note that here (∇u)ij = ∂jui. The coefficients f1(µ)
and f2(µ) depend on the ratio µ of the viscosity of the drop and that of the external fluid
and were chosen in such a way as to match theoretical predictions for small capillary
numbers (Maffettone & Minale 1998):

f1(µ) =
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Here the capillary number is defined as Ca = λτ , where λ is the Lyapunov exponent of
the flow. Note that f2(1) = 1 and hence, for µ = 1, G = ∇u. The last term in (2.1)
describes the capillary relaxation to the spherical shape with a time scale τ . Thanks to an
appropriate choice of the function g(M), the same term enforces that detM is constant
in time and hence the volume of the drop is preserved. The function g(M) has the form
g(M) = 3IIIM/IIM , where IIM and IIIM are the second and third invariants of M, i.e.
IIM = [(I : M)2 − I : M2]/2 and IIIM = detM.
This Section provides insight into the statistics of drop deformation and breakup in

three-dimensional homogeneous isotropic turbulence. We obtain such a turbulent flow by
performing direct numerical simulations of the three-dimensional Navier–Stokes equation

∂tu+ u ·∇u = −∇p+ ν∆u + F (2.3)

for the velocity field u (and pressure p) augmented with the incompressibility condition
∇ ·u = 0. We use the standard, fully de-aliased pseudo-spectral method on a 2π-periodic
cubic domain with 5123 collocation points. The flow is driven to a non-equilibrium steady
state by an external force F with a fixed energy input ϵ. Our choice of ϵ and kinematic
viscosity ν ensures a Taylor-scale Reynolds number Reλ ≈ 111.
In order to study the deformation of droplets in a turbulent flow, we seed our turbulent,

statistically steady, flow with Lagrangian tracers and follow their trajectories, by using
a bilinear-interpolation scheme to obtain the tracer velocity from the Eulerian velocity
evaluated from Eq. (2.3); such trajectories define the motion of the center mass of the
droplets.
Finally, we use the fluid velocity gradients along the trajectories to calculate λ which

is used to define our capillary numbers. We obtain a value of λ such that λτη = 0.15
(where τη is the Kolmogorov time-scale associated with the flow), consistent with earlier
results (Bec et al. 2006). We refer the reader to James & Ray (2017) for a more detailed
description of our numerical procedure. (Note that Biferale et al. (2014) defined the
capillary number in terms of the root mean square of ∂xux instead of λ. However, this
fact only leads to a different proportionality factor in the definition of Ca, since in our
case
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Fig. 1. Time-integrated p.d.f. of (a) the largest eigenvalue of M and (b) the ratio of the largest
and the smallest eigenvalue of M for µ = 1, α = 103, and different values of Ca. For this
value of µ, Cac = 0.23. The p.d.f.s are artificially translated in order to render their power-law
behaviours more easily visible.

same time step as for the Navier–Stokes equation. The integration of (2.1) must preserve
the positive-definite character of M. This is achieved by adapting to (2.1) the Cholesky-
decomposition method proposed by Vaithianathan & Collins (2003) (see the appendix for
the details). Unless otherwise stated, the initial condition is M(0) = I . As in Biferale et al.
(2014), it is assumed that drops break when their aspect ratio |m1/m3| exceeds a
threshold value α. In view of the fact that we are only interested in the dynamics up to
the first breakup and do not consider secondary breakup events, drops are removed from
the flow as soon as they break. In the simulations presented below, the initial number of
drops N(0) = 106.
Following Biferale et al. (2014), we describe the deformation of a drop in terms of the

statistics of m2
1, i.e. the squared length of the semi-major axis. Let p(m2

1, t) be the p.d.f.
of m2

1 and P(m2
1) ≡

∫∞

0 p(m2
1, t)dt its time integral. Biferale et al. (2014) showed that

P(m2
1) behaves as a power law for values of m2

1 smaller than its maximum value (it is
easy to check that the conditions m2

1 ! m2
2 ! m2

3, m
2
1m

2
2m

2
3 = 1 and |m1/m3| " α imply

that m2
1 is bounded and, more precisely, m2

1 " α4/3). The slope increases as a function
of Ca for small Ca and saturates to −1 when Ca exceeds a critical value Cac, which for
µ = 1 was found to be Cac = f1(µ)/2. Figure 1(a) shows that the behaviour of P(m2

1)
is accurately reproduced in our simulations. The power law is even clearer when the p.d.f
of m2

1/m
2
3 is considered, because the condition for breakup is expressed in terms of the

aspect ratio of drops (figure 1(b)).
We note, however, that the possibility of breakup renders drop dynamics a non-

stationary process. Hence the p.d.f. of m2
1 is expected to vary in time, as is confirmed

in figure 2(a). Moreover, at long times p(m2
1, t) reaches an asymptotic shape, but does

not show any definite power-law behaviour. In figure 2(a), the p.d.f.s are translated
vertically in order to facilitate the comparison at different times. In fact the fraction of
drops surviving at time t, N(t)/N(0) ≡

∫

p(m2
1, t)dm

2
1, decays exponentially in time, the

decay rate growing rapidly when Ca exceeds Cac (figure 2(b)). The power-law behaviour
observed by Biferale et al. (2014) is thus recovered only when the time-integrated p.d.f
is considered; indeed the distributions shown in Biferale et al. (2014) were obtained by
averaging over both the Lagrangian trajectories and time.
Since the dynamics of drops is not statistically stationary, P(m2

1) may depend on the
initial shape of drops, namely on the value of the aspect ratio at time t = 0. We thus
performed simulations in which the initial shape tensor is M(0) = diag(ρ0, 1, ρ

−1
0 ), where

ρ0 > 1 is both the aspect ratio and the largest eigenvalue of M at t = 0. Two different
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The scaling of P(r2) can be deduced from that of P(r) by using: P(r2) = 1
2r

−1P(r).
The above power-law behaviours thus reproduce the numerical results shown in figures 1
and 3 for the time-integrated p.d.f.s of the squared length of the semi-major axis. It
should be noted that whereas the power-law behaviour of P(r) for small r is specific
to a monodisperse initial distribution, the large-r power law holds for any p(r, 0) that
vanishes beyond a given r⋆ < ℓ. Integrating (3.5) from 0 to r > r⋆ indeed yields (3.6b)
and hence (3.9b) or (3.10b) depending on the value of Ca. If, by contrast, the initial size
of drops can approach ℓ, in general P(r) does not display a power-law behaviour.

3.2. Time-dependent distribution of drop sizes and breakup frequency

The eigenfunctions of the Fokker–Planck operator that satisfy the reflecting boundary
condition at r = 0 are of the form fν(r) = rd−1

2F1(c+ν , c
−
ν , d/2,−ϵr2) (Celani et al. 2005),

where 2F1 is the Gauss hypergeometric function with ϵ = 2γ(µ)Ca/dr2eq and

c±ν =
d

4

[

1

2γ(µ)Ca
+ 1

]

∓
1

4

√

d2
[

1

2γ(µ)Ca
− 1

]2

−
2dν

γ(µ)Ca
.

The absorbing boundary condition fν(ℓ) = 0 selects a discrete set of acceptable eigen-
functions. The p.d.f. of r can thus be expanded as p(r, t) =

∑∞

n=1 ane
−νntfνn(r), and

hence

p(r, t) ∼ e−ν1tfν1(r) as t → ∞. (3.11)

This result confirms that at long times p(r, t) approaches an asymptotic shape, but this
does not show a power-law behaviour (figure 2(a)). From (3.11), the fraction of drops
surviving at time t decays as

N(t)/N(0) ≡

∫ ℓ

0
p(r, t)dr ∼ e−ν1t as t → ∞, (3.12)

where ν1 is the smallest solution of the equation fνn(ℓ) = 0. Figure 6(a) shows that the
decay rate of the drop number increases rapidly as a function of Ca when Ca exceeds
its critical value, whereas it decreases as a function of µ. In addition, although Cac

depends weakly on µ, the transition to the supecritical regime is much steeper at small µ
(see also figure 6(b)). These results reproduce the behaviours observed in the numerical
simulations (figures 2(b) and 4).

3.3. Mean lifetime of a drop

The average time it takes for a drop of initial size r0 to break can be calculated from
P(r) as follows. Consider the transition probability p(r, t|r0, 0), which is the solution of
(3.3) that satisfies the initial condition p(r, 0|r0, 0) = δ(r − r0). Let T (r0) be the time it
takes for the drop to break in a given realization of the flow and of thermal noise, and
let P(r0, t) be the probability of T (r0) taking the value t. Note that P(r0, t) = −∂tF ,
where F (r0, t) =

∫∞

t P(r0, s)ds is the probability that T (r0) ! t and can be written as

F (r0, t) =
∫ ℓ
0 p(r, t|r0, 0)dr. Therefore, the average of T (r0) is (Gardiner 1983):

T (r0) =

∫ ∞

0
tP(r0, t)dt = −

∫ ∞

0
t[∂tF (r0, t)]dt =

∫ ∞

0
F (r0, t) dt, (3.13)

where we used limt→∞ F (t) = 0, a consequence of the absorbing boundary condition for
p(r, t|r0, 0). By changing the order of integration, we finally obtain:

T (r0) =

∫ ℓ

0
P(r)dr, (3.14)

Prediction
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Fig. 2. (a) Time-dependent p.d.f. of m2
1 for µ = 1, α = 103, Ca = 1 and increasing time instants.

In the legend, the fraction of drops surviving at time t is also indicated. The red curve is the
time-integrated p.d.f. P(m2

1) corresponding to the same parameters. For the sake of comparison,
the p.d.f.s are translated vertically; (b) fraction of surviving drops as a function of time for µ = 1,
α = 103 and different values of Ca. Time is rescaled by the Kolmogorov time (τη) of the flow.
The inset shows the exponential decay rate of the fraction of surviving drops vs the capillary
number rescaled by its critical value.
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Fig. 3. (a) Time-integrated p.d.f. of the largest eigenvalue of M for µ = 1, α = 103, Ca = 1 and
different values of ρ0. The p.d.f.s are normalized to 1 to facilitate the comparison. The dashed
line is proportional to (m2

1)
−1; (b) time-integrated p.d.f. of the largest eigenvalue of M for µ = 1,

ρ0 = 103 and different values of Ca.

behaviours are observed depending on the value of Ca . For small Ca, the shape of P(m2
1)

is not affected significantly by the value of ρ0 (not shown). By contrast, for large Ca , the
interval over which P(m2

1) ∼ (m2
1)

−1 shrinks as ρ0 is increased and the drop volume is
kept constant. In this case, indeed, P(m2

1) ∼ (m2
1)

−1 only for m2
1 ≫ ρ0 (figure 3(a)). The

(m2
1)

−1 behaviour may therefore be difficult to detect when ρ0 approaches the critical
aspect ratio for breakup, α. In fact, when ρ0 is sufficiently large a second power law
emerges for m2

1 ≪ ρ0 whose slope increases as a function of Ca and can turn from
negative to positive at large Ca (figure 3(b)).
The dependence of the deformation and breakup statistics on µ is shown in figure 4.

For small values of Ca, the slope of P(m2
1) varies with µ and is steeper for larger

viscosity ratios (figure 4(a)). It saturates to −1 beyond the critical capillary number, but
the transition to the supercritical regime is slower for larger values of µ. These results
differ somewhat from those of Biferale et al. (2014). The discrepancy may be explained
by considering the time scales associated with the breakup process. Whereas the time-
integrated statistics displays a weak dependence on the viscosity ratio, the time scale
over which breakup occurs depends strongly on µ, and the breakup process considerably
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Fig. 2. (a) Time-dependent p.d.f. of m2
1 for µ = 1, α = 103, Ca = 1 and increasing time instants.

In the legend, the fraction of drops surviving at time t is also indicated. The red curve is the
time-integrated p.d.f. P(m2

1) corresponding to the same parameters. For the sake of comparison,
the p.d.f.s are translated vertically; (b) fraction of surviving drops as a function of time for µ = 1,
α = 103 and different values of Ca. Time is rescaled by the Kolmogorov time (τη) of the flow.
The inset shows the exponential decay rate of the fraction of surviving drops vs the capillary
number rescaled by its critical value.
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behaviours are observed depending on the value of Ca . For small Ca, the shape of P(m2
1)

is not affected significantly by the value of ρ0 (not shown). By contrast, for large Ca , the
interval over which P(m2

1) ∼ (m2
1)

−1 shrinks as ρ0 is increased and the drop volume is
kept constant. In this case, indeed, P(m2

1) ∼ (m2
1)

−1 only for m2
1 ≫ ρ0 (figure 3(a)). The

(m2
1)

−1 behaviour may therefore be difficult to detect when ρ0 approaches the critical
aspect ratio for breakup, α. In fact, when ρ0 is sufficiently large a second power law
emerges for m2

1 ≪ ρ0 whose slope increases as a function of Ca and can turn from
negative to positive at large Ca (figure 3(b)).
The dependence of the deformation and breakup statistics on µ is shown in figure 4.

For small values of Ca, the slope of P(m2
1) varies with µ and is steeper for larger

viscosity ratios (figure 4(a)). It saturates to −1 beyond the critical capillary number, but
the transition to the supercritical regime is slower for larger values of µ. These results
differ somewhat from those of Biferale et al. (2014). The discrepancy may be explained
by considering the time scales associated with the breakup process. Whereas the time-
integrated statistics displays a weak dependence on the viscosity ratio, the time scale
over which breakup occurs depends strongly on µ, and the breakup process considerably
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Fig. 2. (a) Time-dependent p.d.f. of m2
1 for µ = 1, α = 103, Ca = 1 and increasing time instants.

In the legend, the fraction of drops surviving at time t is also indicated. The red curve is the
time-integrated p.d.f. P(m2

1) corresponding to the same parameters. For the sake of comparison,
the p.d.f.s are translated vertically; (b) fraction of surviving drops as a function of time for µ = 1,
α = 103 and different values of Ca. Time is rescaled by the Kolmogorov time (τη) of the flow.
The inset shows the exponential decay rate of the fraction of surviving drops vs the capillary
number rescaled by its critical value.
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line is proportional to (m2
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−1; (b) time-integrated p.d.f. of the largest eigenvalue of M for µ = 1,

ρ0 = 103 and different values of Ca.

behaviours are observed depending on the value of Ca . For small Ca, the shape of P(m2
1)

is not affected significantly by the value of ρ0 (not shown). By contrast, for large Ca , the
interval over which P(m2

1) ∼ (m2
1)

−1 shrinks as ρ0 is increased and the drop volume is
kept constant. In this case, indeed, P(m2

1) ∼ (m2
1)

−1 only for m2
1 ≫ ρ0 (figure 3(a)). The

(m2
1)

−1 behaviour may therefore be difficult to detect when ρ0 approaches the critical
aspect ratio for breakup, α. In fact, when ρ0 is sufficiently large a second power law
emerges for m2

1 ≪ ρ0 whose slope increases as a function of Ca and can turn from
negative to positive at large Ca (figure 3(b)).
The dependence of the deformation and breakup statistics on µ is shown in figure 4.

For small values of Ca, the slope of P(m2
1) varies with µ and is steeper for larger

viscosity ratios (figure 4(a)). It saturates to −1 beyond the critical capillary number, but
the transition to the supercritical regime is slower for larger values of µ. These results
differ somewhat from those of Biferale et al. (2014). The discrepancy may be explained
by considering the time scales associated with the breakup process. Whereas the time-
integrated statistics displays a weak dependence on the viscosity ratio, the time scale
over which breakup occurs depends strongly on µ, and the breakup process considerably
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Fig. 4. (a) Time-integrated p.d.f. of the largest eigenvalue of M for (from bottom to top)
Ca = 0.21, 0.32, 0.51 and different values of µ. The p.d.f.s corresponding to different values
of Ca are translated vertically; (b) exponential decay rate of the number of surviving drops as
a function of µ for Ca = 0.6.
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and (b) µ = 1, α = 103, Ca > Cac. In (a) the Ca = 0.21 and Ca = 0.14 curves are multiplied
by a factor 3 and 1/3, respectively, in order to make the three curves distinguishable.

slows down as µ increases (figure 4(b)). For large values of µ, very long Lagrangian
trajectories therefore need to be considered in order to compute P(m2

1); otherwise small
deformations are privileged and the slope of P(m2

1) may be steeper than it actually
should be. This point is elucidated further in § 3.
Finally, we consider the mean lifetime of a drop, T (ρ0), i.e. the mean time it takes for

a drop of initial aspect ratio ρ0 to break. Two different behaviours are found depending
on whether Ca exceeds or not its critical value. The mean lifetime T (ρ0) decreases as a
power law of ρ0 if Ca < Cac and logarithmically if Ca > Cac (figure 5).
The deformation and breakup statistics presented above is derived analytically in the

next Section.

3. Analytical predictions

For large deformations, the model of Maffettone & Minale (1998) is statistically equiv-
alent to a vector model proposed by Olbricht et al. (1982). The assumptions on the drop
and on the external fluid are essentially the same, and the semi-major axis r of the drop
satisfies the equation:

ṙ = G r −
f1(µ)

2τ
r +

√

r2eqf1(µ)

τ
ξ(t), (3.1)

9

The scaling of P(r2) can be deduced from that of P(r) by using: P(r2) = 1
2r

−1P(r).
The above power-law behaviours thus reproduce the numerical results shown in figures 1
and 3 for the time-integrated p.d.f.s of the squared length of the semi-major axis. It
should be noted that whereas the power-law behaviour of P(r) for small r is specific
to a monodisperse initial distribution, the large-r power law holds for any p(r, 0) that
vanishes beyond a given r⋆ < ℓ. Integrating (3.5) from 0 to r > r⋆ indeed yields (3.6b)
and hence (3.9b) or (3.10b) depending on the value of Ca. If, by contrast, the initial size
of drops can approach ℓ, in general P(r) does not display a power-law behaviour.

3.2. Time-dependent distribution of drop sizes and breakup frequency

The eigenfunctions of the Fokker–Planck operator that satisfy the reflecting boundary
condition at r = 0 are of the form fν(r) = rd−1

2F1(c+ν , c
−
ν , d/2,−ϵr2) (Celani et al. 2005),

where 2F1 is the Gauss hypergeometric function with ϵ = 2γ(µ)Ca/dr2eq and

c±ν =
d

4

[

1

2γ(µ)Ca
+ 1

]

∓
1

4

√

d2
[

1

2γ(µ)Ca
− 1

]2

−
2dν

γ(µ)Ca
.

The absorbing boundary condition fν(ℓ) = 0 selects a discrete set of acceptable eigen-
functions. The p.d.f. of r can thus be expanded as p(r, t) =

∑∞

n=1 ane
−νntfνn(r), and

hence

p(r, t) ∼ e−ν1tfν1(r) as t → ∞. (3.11)

This result confirms that at long times p(r, t) approaches an asymptotic shape, but this
does not show a power-law behaviour (figure 2(a)). From (3.11), the fraction of drops
surviving at time t decays as

N(t)/N(0) ≡

∫ ℓ

0
p(r, t)dr ∼ e−ν1t as t → ∞, (3.12)

where ν1 is the smallest solution of the equation fνn(ℓ) = 0. Figure 6(a) shows that the
decay rate of the drop number increases rapidly as a function of Ca when Ca exceeds
its critical value, whereas it decreases as a function of µ. In addition, although Cac

depends weakly on µ, the transition to the supecritical regime is much steeper at small µ
(see also figure 6(b)). These results reproduce the behaviours observed in the numerical
simulations (figures 2(b) and 4).

3.3. Mean lifetime of a drop

The average time it takes for a drop of initial size r0 to break can be calculated from
P(r) as follows. Consider the transition probability p(r, t|r0, 0), which is the solution of
(3.3) that satisfies the initial condition p(r, 0|r0, 0) = δ(r − r0). Let T (r0) be the time it
takes for the drop to break in a given realization of the flow and of thermal noise, and
let P(r0, t) be the probability of T (r0) taking the value t. Note that P(r0, t) = −∂tF ,
where F (r0, t) =

∫∞

t P(r0, s)ds is the probability that T (r0) ! t and can be written as

F (r0, t) =
∫ ℓ
0 p(r, t|r0, 0)dr. Therefore, the average of T (r0) is (Gardiner 1983):

T (r0) =

∫ ∞

0
tP(r0, t)dt = −

∫ ∞

0
t[∂tF (r0, t)]dt =

∫ ∞

0
F (r0, t) dt, (3.13)

where we used limt→∞ F (t) = 0, a consequence of the absorbing boundary condition for
p(r, t|r0, 0). By changing the order of integration, we finally obtain:

T (r0) =

∫ ℓ

0
P(r)dr, (3.14)

Prediction
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Fig. 4. (a) Time-integrated p.d.f. of the largest eigenvalue of M for (from bottom to top)
Ca = 0.21, 0.32, 0.51 and different values of µ. The p.d.f.s corresponding to different values
of Ca are translated vertically; (b) exponential decay rate of the number of surviving drops as
a function of µ for Ca = 0.6.
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and (b) µ = 1, α = 103, Ca > Cac. In (a) the Ca = 0.21 and Ca = 0.14 curves are multiplied
by a factor 3 and 1/3, respectively, in order to make the three curves distinguishable.

slows down as µ increases (figure 4(b)). For large values of µ, very long Lagrangian
trajectories therefore need to be considered in order to compute P(m2

1); otherwise small
deformations are privileged and the slope of P(m2

1) may be steeper than it actually
should be. This point is elucidated further in § 3.
Finally, we consider the mean lifetime of a drop, T (ρ0), i.e. the mean time it takes for

a drop of initial aspect ratio ρ0 to break. Two different behaviours are found depending
on whether Ca exceeds or not its critical value. The mean lifetime T (ρ0) decreases as a
power law of ρ0 if Ca < Cac and logarithmically if Ca > Cac (figure 5).
The deformation and breakup statistics presented above is derived analytically in the

next Section.

3. Analytical predictions

For large deformations, the model of Maffettone & Minale (1998) is statistically equiv-
alent to a vector model proposed by Olbricht et al. (1982). The assumptions on the drop
and on the external fluid are essentially the same, and the semi-major axis r of the drop
satisfies the equation:

ṙ = G r −
f1(µ)

2τ
r +

√

r2eqf1(µ)

τ
ξ(t), (3.1)
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where P(r) is the solution of (3.5) corresponding to the initial condition p(r, 0) = δ(r−
r0). Inserting now the asymptotic behaviours (3.9b) and (3.10b) into (3.14) yields:

T (r0) ∼

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

ℓ

req

)β−1

−

(

r0
req

)β−1

if Ca < Cac,

ln

(

ℓ

r0

)

if Ca > Cac,

(3.15)

as seen in figure 5.

4. Conclusions

The Lagrangian dynamics of a sub-Kolmogorov drop in a turbulent flow is entirely
determined by the statistics of the velocity gradient. Strong fluctuations of the strain
along the trajectory of the drop highly modify the shape and the size of the drop and
ultimately break it. We have performed a detailed numerical and analytical study of
the deformation and breakup statistics of neutrally buoyant, sub-Kolmogorov, ellipsoidal
drops in homogeneous and isotropic turbulence as a function of the capillary number, the
viscosity ratio between the inner and outer fluids and the initial drop-size distribution.
Our study relies on the model of Maffettone & Minale (1998) for drop dynamics.

Potential extensions of this study concern the impact on the deformation and breakup
dynamics of effects that are not taken into account by the model of Maffettone & Minale
(1998), such as deviations from the ellipsoidal shape, nonlinear deformations near to
breakup, large density contrasts between the fluids inside and outside the drop, or
secondary breakups.
Maffettone & Minale (1998) observe that, for µ = 1, their model is closely related

to the Oldroyd-B model for solutions of flexible polymers (Bird et al. 1987). Likewise,
when µ = 1 and hence G = ∇u the vector model of Olbricht et al. (1982) reduces to
the Hookean dumbbell model, which describes the evolution of the end-to-end separation
vector of a flexible polymer molecule in the limit in which nonlinear elastic effects are
negligible (Bird et al. 1987). Therefore, after appropriate redefinition of the parameters,
our results also apply to the degradation of polymers in turbulent flows.

Prediction
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Conclusions and Perspective
Introduction

•
The probability distribution function of droplet sizes show a

power-law behaviour.

�
For small Capillary numbers, a decreasing exponent.

�
For large Capillary numbers, it scales as r�1

for r > r0 and a

di↵erent, Ca-dependent exponent for r < r0.

•
The number of surviving drops decay exponentially.

�
The decay rate increases rapidly as Ca ! Cac .

�
The decay rate decreases as a function of µ.

•
The mean life-time of a drop show di↵erent scaling laws

�
Power-law behaviour for Ca < Cac .

�
Logarithmic decrease for Ca > Cac .

•
Extension of this approach beyond droplets to more extended

objects such as dumbbells.


