Negative mobility in interacting particle systems

Pradeep K. Mohanty
Saha Institute of Nuclear Phys, 1/AF Bidhan Nagar, Kolkata, India

E-mail :pk.mohanty@saha.ac.in

NEGATIVE RESPONSE

normally

current always
increases with bias

bias \rightarrow
negative response

current decreases

 with increasing bias

What I intend to discuss......

Mechamism of NEGATIVE RESPONSE in NON-EQUILIBRIUM SYSTEMS

In equilibrium <J> =0 but current fluctuates (microscopic) $\left\langle J^{2}\right\rangle=$ finite
Like in a paramagnet $\langle M\rangle=0$ but $\left\langle M^{2}\right\rangle=$ finite

In equilibrium <J> =0 but current fluctuates (microscopic) $\left\langle J^{2}\right\rangle=$ finite
Like in a paramagnet $\langle M\rangle=0$ but $\left\langle M^{2}\right\rangle=$ finite

Description: $Z(z)=\sum_{M=0}^{\infty} z^{M} Q_{M} \quad z=e^{-h} \quad<M>=z \frac{d}{d z} \ln Z$ (of para-magnet)

$$
\left.\frac{d}{d h}<M\right\rangle=\left\langle M^{2}\right\rangle-\langle M\rangle^{2} \equiv \chi
$$

With a small field: $\langle M\rangle_{h}=\langle M\rangle_{0}+h \frac{d}{d h}\langle M\rangle_{0}=h\left\langle M^{2}\right\rangle_{0}$
Response would be propertional to the fluctuations at zero-filed.

In equilibrium <J> =0 but current fluctuates (microscopic) $\left\langle J^{2}\right\rangle=$ finite
Like in a paramagnet $\langle M\rangle=0$ but $\left\langle M^{2}\right\rangle=$ finite

Description: $Z(z)=\sum_{M=0}^{\infty} z^{M} Q_{M} \quad z=e^{-h} \quad<M>=z \frac{d}{d z} \ln Z$ (of para-magnet)

$$
\left.\frac{d}{d h}<M\right\rangle=\left\langle M^{2}\right\rangle-\langle M\rangle^{2} \equiv \chi
$$

With a small field: $\langle M\rangle_{h}=\langle M\rangle_{0}+h \frac{d}{d h}\langle M\rangle_{0}=h\left\langle M^{2}\right\rangle_{0}$
Response would be propertional to the fluctuations at zero-filed.

Same analogy

$$
\begin{aligned}
J(\epsilon)= & J(0)+\epsilon\left(\left\langle J^{2}\right\rangle-\langle J\rangle^{2}\right)_{\epsilon=0} \\
& =\epsilon\left\langle J^{2}\right\rangle_{0}
\end{aligned}
$$

Direction of current = direction of fileld

Calculating Response:

Single random walker (A):
1-D periodic lattice, L sites

$$
A 0 \underset{q}{\stackrel{p}{\rightleftharpoons}} 0 A \quad{ }_{\mathrm{i}}^{\mathrm{i}+1} \mathrm{~A}
$$

i-1

Current :
Number of right/left moves in time T: N_{R}, N_{L}

$$
<J>=\lim _{T \rightarrow \infty} \frac{1}{T}\left(<N_{R}>-<N_{L}>\right)=p-q
$$

Bias:

MonteCarlo Dynamics :

1

Many walker \& exclusion:

$A 0 \stackrel{p}{\rightleftharpoons} 0 A$

$$
\begin{aligned}
& <J>=p-q \\
& \Rightarrow \frac{d J}{d \epsilon} \geq 0
\end{aligned}
$$

Many walker, no exclusion :

Right/left hop rates: $u_{R}(n)=p u(n) \quad u_{L}(n)=q u(n)$

- Zero Range Process (ZRP), exactly solvable.

$$
q u(4) \quad p u(4)
$$

- Steadystate weights: $P\left(\left\{n_{i}\right\}\right) \sim \prod_{i=1}^{L} f\left(n_{i}\right)$, where $f(m)=\prod_{k=1}^{m} \frac{1}{u(k)}$
- Current: $J=\left\langle u_{R}(n)\right\rangle-\left\langle u_{L}(n)\right\rangle=(p-q) z$

$$
\Rightarrow \quad \frac{d J}{d \epsilon} \geq 0
$$

L $\quad 1$

$$
p=1, q=e^{-\varepsilon} \quad \text { Only As are biased to move towards right }
$$

For any fixed $\psi, \alpha \Rightarrow \frac{d J_{A}}{d \epsilon} \geq 0$
Numerical results

L $\quad 1$
$A 0 \underset{q}{p} 0 A \quad B 0 \underset{\psi}{\underset{\sim}{\psi}} 0 B \quad A B \underset{\alpha}{\underset{\sim}{\rightleftharpoons}} B A i_{\text {i-1 }}^{\substack{\text { A } \\ \text { A }}}$

$$
p=1, q=e^{-\varepsilon} \quad \text { Only As are biased to move towards right }
$$

For any fixed $\psi, \alpha \Rightarrow \frac{d J_{A}}{d \epsilon} \geq 0$
Numerical results

- Additional field on B particles $\quad B 0 \underset{\psi}{\stackrel{\varphi}{\rightleftharpoons}} 0 B$

For any fixed field $\log \left(\frac{\varphi}{\psi}\right)$ and $\alpha, \Rightarrow \frac{d J_{A}}{d \epsilon} \geq 0$

Additional interaction among A, B particles :

$$
\begin{aligned}
& A 0 \stackrel{p}{\underset{q}{p}} 0 A \\
& A B \underset{\alpha}{\underset{\alpha}{\rightleftharpoons}} B A
\end{aligned}
$$

$$
\begin{aligned}
& \tau B 0 \xrightarrow{\tau(\tau)} \tau 0 B \quad \\
& \begin{array}{l}
\text { right move of } \mathrm{B} \\
\tau=0, A, B
\end{array} \quad \underline{l e f t ~ m o v e ~ o f ~ B}
\end{aligned}
$$

+ We consider $r(0)=w, l(0)=1-w$; all other rates $1-w$
- Only isolated B particles are biased.
(As are anyway biased as $p=1, q=e^{-\epsilon}$)

Additional interaction among A, B particles :

$$
\begin{aligned}
& A 0 \stackrel{p}{\underset{q}{p} 0 A} \\
& A B \underset{\alpha}{\underset{\alpha}{\rightleftharpoons}} B A
\end{aligned}
$$

$$
\tau B 0 \xrightarrow{r(\tau)} \tau 0 B \quad 0 B \tau \xrightarrow{l(\tau)} B 0 \tau
$$

right move of B
left move of B

$$
\tau=0, A, B
$$

We consider $r(0)=w, l(0)=1-w$; all other rates $1-w$
Only isolated B particles are biased.
(As are anyway biased as $p=1, q=e^{-\epsilon}$)

Currents:

Current of A, B particles

$$
\begin{aligned}
& \alpha=0.01 \\
& w=0.9
\end{aligned}
$$

B: fixed +ve bias (to right) A: +ve bias (to right)

(a)Negative diffrential mobility/respose (NDM) for $j_{A}, j_{B}, \quad j=j_{A}+j_{B}$

Why does it exhibit NDM?

We measure other observables

$$
\begin{array}{ll}
\text { servables } & n_{A, B}=<n_{r}^{A, B}+n_{l}^{A, B}>- \\
\text { along with } & \left.j_{A, B}=<n_{r}^{A, B}-n_{l}^{A, B}\right\rangle
\end{array}
$$

Why does it exhibit NDM ?

We measure oher observables $\quad n_{A, B}=\left\langle n_{r}^{A, B}+n_{l}^{A, B}\right\rangle_{-}$
along with $\quad j_{A, B}=\left\langle n_{r}^{A, B}-n_{l}^{A, B}\right\rangle$

Current of A particles (driven-sector) follows the traffic of B (not driven by ϵ)

Conjecture :

Possible mechanism for NDM in interacting systems: particle current in a driven many particle system might show a nonmonotonic behaviour if some modes, which are not driven by the external field, slow down with increased driving.

Interacting particle system has many current-carrying modes (here A, B)

What is necessary for NDM: traffic of driven degrees must slow down
Slow down of non-driven modes
Mechanism:
Slows down traffic of driven modes due to interaction

What, if we explicitly slow down Bs in TSEP ?
L $\quad 1$

Now $p=1, q=e^{-\epsilon}$, but ψ is a decreasing function of ϵ, say $\psi=1 /(1+\varepsilon)$

What, if we explicitly slow down Bs in TSEP ?
L $\quad 1$
$i+1$ A
$A 0 \underset{q}{\stackrel{p}{\rightleftharpoons}} 0 A$
$B 0 \underset{\psi}{\stackrel{\psi}{\rightleftharpoons}} 0 B$
$A B \underset{\alpha}{\underset{\sim}{\rightleftharpoons}} B A$
i A
i-1

Now $p=1, q=e^{-\epsilon}$, but ψ is a decreasing function of ϵ, say $\psi=1 /(1+\varepsilon)$

Current for equal-density case

Indeed TSEP now exhibits NDR
TSEP is exactly solvable for $\alpha=0$

- Just two walkers:

$$
\begin{array}{r}
\text { (no exchange) }
\end{array} A 0 \underset{q}{\stackrel{p}{\rightleftharpoons}} 0 A B 0 \underset{\underset{\psi}{\psi}}{\underset{s_{i}}{ }=A, B, 0} 0 B
$$

Exact solution using Matrix Product Ansatz

$$
P(000 \mathrm{~A} 0 \ldots \mathrm{~B} 0 \ldots)=\operatorname{Tr}(E E E A E \ldots B E \ldots)
$$

$$
\begin{aligned}
& P(C)=P\left(\left\{s_{i}\right\}\right)=\operatorname{Tr}\left(\prod_{i=1}^{L} X_{i}\right) \\
& X_{i}=A \delta_{s_{i}, A}+B \delta_{s_{i}, B}+E \delta_{s_{i}, 0}
\end{aligned}
$$

$$
\begin{array}{r}
\text { (no exchange) }
\end{array} A 0 \underset{q}{\stackrel{p}{\rightleftharpoons}} 0 A B 0 \underset{\psi}{\underset{\psi}{\psi}} 0 B
$$

Exact solution using Matrix Product Ansatz

$$
\begin{aligned}
P(C)=P\left(\left\{s_{i}\right\}\right) & =\operatorname{Tr}\left(\prod_{i=1}^{L} X_{i}\right) \\
& X_{i}=A \delta_{s_{i}, A}+B \delta_{s_{i}, B}+E \delta_{s_{,}, 0}
\end{aligned}
$$

$$
P(000 A 0 \ldots B 0 \ldots)=\operatorname{Tr}(E E E A E \ldots B E \ldots)
$$

Matrix Algebra:
$p A E-q E A=x_{0} A$
$\psi(B E-E B)=x_{0} B$
$A^{2}=0, \quad B^{2}=0$

Matrix representation :

$$
\begin{aligned}
& A=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \quad E=\left(\begin{array}{ll}
r & 0 \\
0 & 1
\end{array}\right) \\
& \text { Here, } r=\frac{p+\psi}{q+\psi}
\end{aligned}
$$

- Average particle current :

$$
<J>=(p<A E>-q<E A>)+\psi(<B E>-<E B>)=\frac{2(p-q) \underline{\psi}}{p+\psi}
$$

$$
\langle J\rangle(\varepsilon)=\frac{2\left(1-e^{-\varepsilon}\right)}{\left(2+\varepsilon^{2}\right)}
$$

$$
p=1, q=e^{-\varepsilon}, \psi=\frac{1}{\left(1+\varepsilon^{2}\right)}
$$

NDM for any ψ, as long as $\psi \ll 0$

More examples: Asymmetric misanthrope process

$$
\begin{aligned}
& i=1, \ldots, L \text { sites } \\
& \mathbf{u}_{L}\left(\mathbf{3 , 1)} \curvearrowleft \mathbb{u}_{R}(3,2)\right. \\
& n_{i} \geq 0 \text { particles } \\
& \text { - 으 으 으 으 으 은 } \quad \sum_{i=1}^{L} n_{i}=N
\end{aligned}
$$

No hard core exclusion
Dynamics - right hop: $u_{R}\left(n_{i}, n_{i+1}\right) \quad$ left hop: $u_{L}\left(n_{i}, n_{i+1}\right)$

$u_{R}(m, n)$	$p 0, \quad n=0$
	$1, \quad$ otherwise
$u_{L}(m, n)$	$p 0, \quad m=1$
	$e-\varepsilon$, $m>1, n=0$
	$1 / 2$, $m>1, n>0$

But, what went wrong with the response formula ?

$$
N_{R}, N_{L} \text { fluctuates independently }
$$

Correspondingly, $J=N_{R}-N_{L} \quad S=N_{R}+N_{L}$ fluctuates, but J and S are correlated

Correct response formula :

$$
\left.\frac{d}{d \epsilon}<J\right\rangle=\langle J ; J\rangle-\text { const. }\langle J ; S\rangle
$$

In equilibrium:

$$
\left.\square \frac{d}{d \epsilon}<J\right\rangle=\langle J ; J\rangle=\left\langle J^{2}\right\rangle
$$

But, what went wrong with the response formula ?

N_{R}, N_{L} fluctuates independently
Correspondingly, $J=N_{R}-N_{L} \quad S=N_{R}+N_{L}$ fluctuates, but J and S are correlated

Correct response formula :

$$
\left.\frac{d}{d \epsilon}<J\right\rangle=\langle J ; J\rangle-\text { const. }\langle J ; S\rangle
$$

Baiesi et. al., J. Stat. Phys 2009

Non- equilibrium: driven non-interacting particles

Summary

What gives rise to negative response ?

Interacting particle system has many current-carrying modes

If external field "bias" someof the modes (dominatly) and slow-down other modes, one expects negative response

Experimints?
(a)

(b)

Thanks to Amit, Urna

Zero range and finite range processes with asymmetric rate functions

A Chatterjee, PKM, JSTAT2017

MPA for interacting-particles systems
 without hardcore-constraints.

A Chatterjee, PKM, Jphys A 2017

Mechanism of negative response in interacting-particles systems

A Chatterjee, U basu, PKM, (arXiv:1712.01236)

- Negative Response : for non-interacting particles

Trapping potential

(a) $q=1 \quad J=0$
(b) $\mathbf{q}=\mathbf{0 . 9}$, only few particles get trapped, positive response
(c) $\mathbf{q}=0.05$, most of the particles get trapped, negative response

Baerts et.al., PRE 88, 052109

Many other examples

Asymmetric misanthrope process (AMAP):
Hop-rate depends on occupation of dep. and arv. sites. But the rate functions are different for R, L

Asymmetric finite range process (AFRP):
Hop-rate depends on occupation of dep. Site and its R - nearest neighbours. But the rate functions are different for R, L.

Higher dimensions:
AZRP and AMAP shows current reversal in higher dimension.

Requirement

Interacting particle system where some internal degrees experience a different bias then the rest.

Up-down, active-inactive, isolated-crowded

Asymmetry from geometry

