Exact solution of a left-permeable open ASEP

Arvind Ayyer

Department of Mathematics
Indian Institute of Science, Bangalore
February 16, 2018
(joint with C. Finn and D. Roy)
arXiv:1708. 09153
ISPCM - 2018

The Model

- Two-species semipermeable ASEP with L sites.
- Particles of type 1,2 as well as vacancies.
- Number n_{1} of 1 's conserved.
- Bulk dynamics

$$
\begin{array}{ll}
20 & \stackrel{1}{\underset{q}{\rightleftharpoons}} 02 \\
10 & \stackrel{1}{\underset{q}{\rightleftharpoons}} 01 \\
21 & \underset{q}{\stackrel{1}{\rightleftharpoons}} 12
\end{array}
$$

- Left boundary

$$
0 \underset{\gamma}{\stackrel{\alpha}{\rightleftharpoons}} 2
$$

- Right boundary

$$
2 \underset{\delta}{\stackrel{\beta}{\rightleftharpoons}} 0
$$

Matrix Ansatz

- Let $\tau=\left(\tau_{1}, \ldots, \tau_{L}\right)$ be a configuration.
- The steady state can be computed using

$$
P(\tau)=\frac{1}{Z(L, n)}\langle W| \prod_{i=1}^{L}\left(\delta_{\tau_{i}, 2} D+\delta_{\tau_{i}, 1} A+\delta_{\tau_{i}, 0} A\right)|V\rangle
$$

- The algebra of the matrices and boundary vectors is given by

$$
\begin{aligned}
D E-q E D & =D+E, \\
D A-q A D & =A, \\
A E-q E A & =A, \\
(\beta D-\delta E)|V\rangle & =|V\rangle, \\
\langle W|(\alpha E-\gamma D) & =\langle W| .
\end{aligned}
$$

- Solved by M. Uchiyama (Chaos, Solitons and Fractals, 2007)

The Phase Diagram

Take $L \rightarrow \infty$ such that $n_{1} / L \rightarrow \rho$.

$$
\begin{aligned}
& a=\frac{1-q-\alpha+\gamma+\sqrt{(1-q-\alpha+\gamma)^{2}+4 \alpha \gamma}}{2 \alpha} \\
& b=\frac{1-q-\beta+\delta+\sqrt{(1-q-\beta+\delta)^{2}+4 \beta \delta}}{2 \beta}, \\
& \zeta=\frac{1+\rho}{1-\rho} .
\end{aligned}
$$

Densities and Currents

Region	Density of 2's	Current of 2's
A	$\frac{1}{1+a}$	$(1-q) \frac{a}{(1+a)^{2}}$
B	Piecewise constant	$(1-q) \frac{b}{(1+b)^{2}}$
C	$\frac{1-\rho}{2}$	$(1-q) \frac{1-\rho^{2}}{4}$

The two-species left-permeable ASEP

- One-dimensional lattice of size L
- No conservation
- Bulk rules same as before

$$
j i \underset{q}{\underset{\sim}{\rightleftharpoons}} i j \text { if } j>i
$$

- Left boundary
$0 \rightarrow 1$ with rate γ,
$0,1 \rightarrow 2$ with rate α,
$2 \rightarrow 1$ with rate $\widetilde{\gamma}$.
where $\widetilde{\gamma}=\frac{\alpha+\gamma+q-1}{\alpha+\gamma} \gamma$. Note that $\alpha+\gamma+q>1$.
- Right boundary

$$
2 \stackrel{\beta}{\underset{\delta}{\rightleftharpoons}} 0
$$

Matrix Ansatz

- Denote the matrices for $2,1,0$ as D, A, E.
- Representation for this model is given by bulk relations

$$
\begin{aligned}
& D E-q E D=D+E \\
& A E-q E A=A \\
& D A-q A D=A
\end{aligned}
$$

and boundary relations

$$
\begin{aligned}
& (\alpha+\gamma)\langle W| E=\langle W| \\
& \langle W|(\gamma E-\alpha A+\widetilde{\gamma} D)=0 \\
& (-\delta E+\beta D)|V\rangle=|V\rangle
\end{aligned}
$$

- We define matrices \mathbf{e}, \mathbf{d}, satisfying the q-deformed harmonic oscillator algebra,

$$
\begin{aligned}
\mathbf{d e}-q \mathbf{e d} & =1-q, \\
\langle W| \mathbf{e}+a c\langle W| \mathbf{d} & =(a+c)\langle W|, \\
\mathbf{d}|V\rangle+b d \mathbf{e}|V\rangle & =(b+d)|V\rangle,
\end{aligned}
$$

where a, b, c, d are expressed in terms of the boundary rates.

- Then the operators

$$
\begin{aligned}
& D=\frac{1}{1-q}(1+\mathbf{d}), \quad E=\frac{1}{1-q}(1+\mathbf{e}), \\
& A=\lambda(D E-E D)=\frac{\lambda}{1-q}(1-\mathbf{e d}),
\end{aligned}
$$

satisfy the desired algebra, where $\lambda=\gamma / \alpha$.

Continuous big q-Hermite polynomials

- The q-shifted factorial is given by

$$
\left(a_{1}, \ldots, a_{s} ; q\right)_{n}=\prod_{r=1}^{s}\left(a_{r} ; q\right)_{n}
$$

where

$$
(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)
$$

valid also for $n \rightarrow \infty$ when $q<1$.

- The basic hypergeometric series is given by

$$
\begin{aligned}
{ }_{r} \phi_{s}\left[\left.\begin{array}{l}
a_{1}, \ldots, a_{r} \\
b_{1}, \ldots, b_{s}
\end{array} \right\rvert\, q, z\right]= & \sum_{k=0}^{\infty} \frac{\left(a_{1}, \ldots, a_{r} ; q\right)_{k}}{\left(q, b_{1}, \ldots, b_{s} ; q\right)_{k}} \\
& \times\left((-1)^{k} q^{\left.\binom{k}{2}\right)^{1+s-r} z^{k}}\right.
\end{aligned}
$$

Continuous big q-Hermite polynomials

- Define

$$
F_{n}(u, v ; \lambda)=\sum_{k=0}^{n} \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}(\lambda u ; q)_{k} v^{k} u^{n-k}
$$

which satisfies a three-term recurrence relation.

- Specialisation of the parameters u, v gives the continuous big q-Hermite polynomial,

$$
H_{n}(\cos \theta ; \lambda \mid q)=F_{n}\left(e^{\mathrm{i} \theta}, e^{-\mathrm{i} \theta} ; \lambda\right) .
$$

Representation of the algebra

- The operators can be represented as

$$
\begin{aligned}
& \mathbf{d}=\sum_{n=1}^{\infty} \sqrt{1-q^{n}}|n-1\rangle\langle n| \\
& \mathbf{e}=\sum_{n=0}^{\infty} \sqrt{1-q^{n+1}}|n+1\rangle\langle n|
\end{aligned}
$$

- Writing the boundary vectors as

$$
\langle W|=\sum_{n=0}^{\infty} w_{n}\langle n|, \quad|V\rangle=\sum_{n=0}^{\infty} v_{n}|n\rangle
$$

we find that

$$
w_{n}=\frac{F_{n}(a, c ; 0)}{\sqrt{(q ; q)_{n}}}, \quad v_{n}=\frac{F_{n}(b, d ; 0)}{\sqrt{(q ; q)_{n}}}
$$

Partition function

- Define the nonequilibrium partition function

$$
Z_{L}\left(\xi^{2}, \zeta\right)=\langle W|\left(E+\xi^{2} D+\zeta A\right)^{L}|V\rangle
$$

so that ξ^{2}, ζ are fugacities for type 1 and 2 particles.

- We then obtain

$$
\begin{aligned}
Z_{L}\left(\xi^{2}, \zeta\right)= & \int_{0}^{\pi} \frac{\mathrm{d} \theta}{2 \pi} w\left(\cos \theta ; \lambda \zeta \xi^{-1}\right) \Theta\left(\cos \theta ; 0, \xi^{-1} c \mid \lambda \zeta \xi^{-1}\right) \\
& \times \Theta\left(\cos \theta ; \xi b, \xi d \mid \lambda \zeta \xi^{-1}\right)\left(\frac{1+\xi^{2}+2 \xi \cos \theta}{1-q}\right)^{L}
\end{aligned}
$$

where Θ is an explicit ${ }_{2} \phi_{2}$ and w is the weight for the orthogonal polynomials.

Observables

- The bulk densities are given by

$$
\begin{aligned}
\rho^{(1)} & =\left.\frac{1}{L} \frac{\partial}{\partial \zeta} \log Z_{L}\left(\xi^{2}, \zeta\right)\right|_{\xi^{2}=\zeta=1}, \\
\rho^{(2)} & =\left.\frac{1}{L} \frac{\partial}{\partial \xi^{2}} \log Z_{L}\left(\xi^{2}, \zeta\right)\right|_{\xi^{2}=\zeta=1}
\end{aligned}
$$

- Clearly, the current of 1's is 0 . The current of 2's can be shown to be

$$
J^{(2)}=\frac{Z_{L-1}}{Z_{L}}
$$

Phase diagram in the thermodynamic limit

$$
b=\frac{1-q-\beta+\delta+\sqrt{(1-q-\beta+\delta)^{2}+4 \beta \delta}}{2 \beta}, \lambda=\gamma / \alpha
$$

Densities and Currents

Phase	$\rho^{(1)}$	$\rho^{(2)}$	Current $J^{(2)}$
Maximal current (MC)	$\mathcal{O}\left(\frac{1}{L}\right)$	$\frac{1}{2}$	$\frac{1-q}{4}$
Low density (LD)	$\frac{\lambda-1}{\lambda+1}$	$\frac{1}{\lambda+1}$	$\frac{(1-q) \lambda}{(1+\lambda)^{2}}$
High density (HD)	$\mathcal{O}\left(\frac{1}{L}\right)$	$\frac{b}{1+b}$	$\frac{(1-q) b}{(1+b)^{2}}$
Coexistence line (CL)	linear	linear	$\frac{(1-q) b}{(1+b)^{2}}$

Simulations: MC phase

(a) $L=500, \alpha=0.62, \gamma=$
$0.23, \beta=0.83, \delta=0.37, q=$ 0.41

(b) $L=500, \alpha=0.45, \gamma=$
$0.41, \beta=0.85, \delta=0.1, q=0.41$

Simulations: LD phase

(c) $L=500, \alpha=0.22, \gamma=$
$0.7, \beta=0.64, \delta=0.47, q=0.41$

(d) $L=500, \alpha=0.5, \gamma=$
$0.58, \beta=0.95, \delta=0.61, q=$ 0.41

Simulations: HD phase

(e) $L=500, \alpha=0.32, \gamma=$
$0.56, \beta=0.35, \delta=0.9, q=0.41$

(f) $L=500, \alpha=0.81, \gamma=$
$0.16, \beta=.35, \delta=0.9, q=0.41$

Simulations: CL

(g) Time-averaged densities for $L=500$ with $\alpha=0.15, \gamma=$ $0.74, \beta=0.28, \delta=0.89, q=$ 0.41 .

(h) Instantaneous density profiles for $L=2500$, coarse-grained over 50 sites with $\alpha=0.15, \gamma=$ $0.74, \beta=0.28, \delta=0.89, q=$ 0.41 .

Thank you for your attention!

For more details, please see Dipankar's poster!

