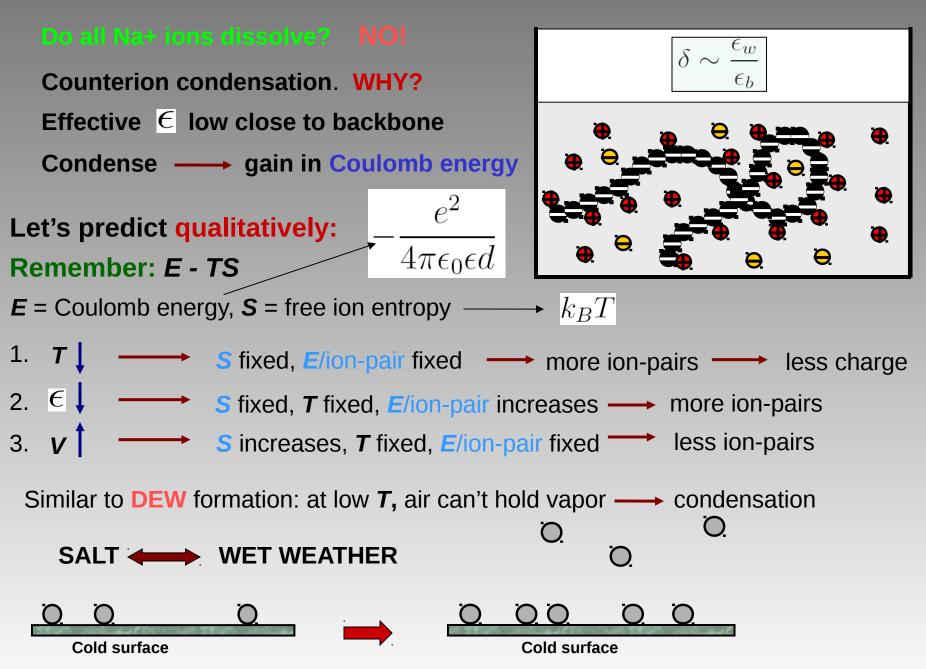
Equilbrium and Kinetics of Polyelectrolytes

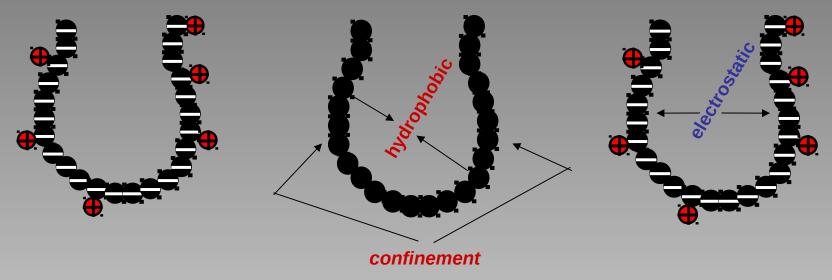
# Arindam Kundagrami

Department of Physical Sciences & Centre for Advanced Functional Materials, Indian Institute of Science Education & Research (IISER) Kolkata, Mohanpur


### **ISPCM 2018, ICTS, Bangalore**

16-18 February 2018

16 February 2018


**Funding:** Indian Institute of Science Education Research (IISER) Kolkata (MHRD)

### <u> Charged polymers – energy and entropy:</u>



## Interactions (energy) in a charged polymer chain:

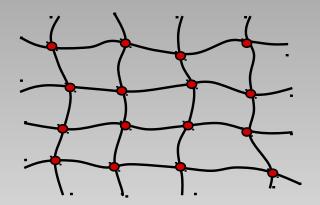
**E** – **TS**, but is it so simple? What are the contributions?



### Chain entropy: maximized if Gaussian coil

Excluded volume: chemical affinity (hydrophilicity), or mismatch (hydrophobicity)

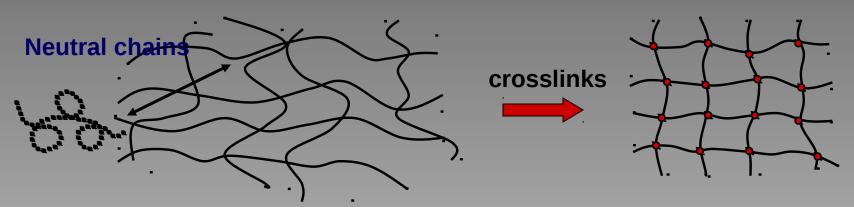
**Coulomb repulsion:** between bare charges — chain expansion


EXAMPLE – Mutual Dependency:

poor solvent ---- Collapsed chain ----- Ion condensation

SCHEME: *E* – *TS* must be MINIMIZED. But, SIZE and CHARGE coupled.

### DOUBLE MINIMIZATION : SELF-CONSISTENCY

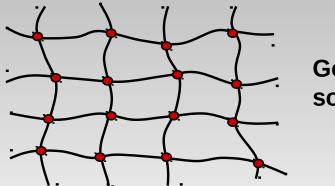

# Kinetics of swelling of polymer gels





**Graduate Student: Swati Sen (Poster)** 

### **Polymer gels - uncharged:**

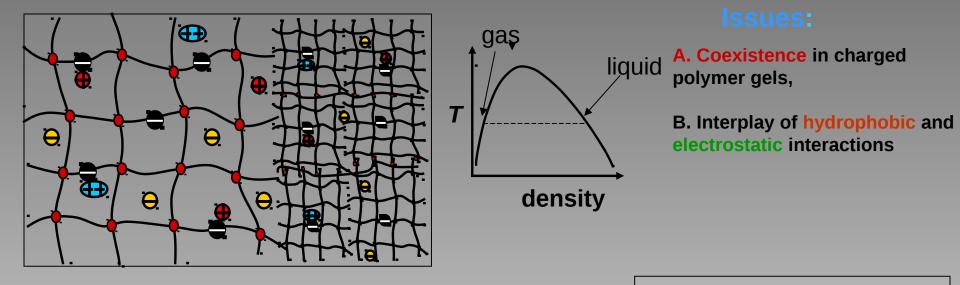


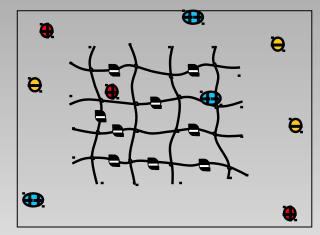

Gel: large single molecule – different kind

### Many chains connected at different points

Strand between two crosslinks similar to single chain

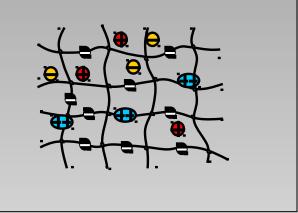
Follows all properties of a single chain - one-to-one correspondence





Good solvent Poor solvent

Contribution to **free energy (***E* – *TS***)**? Energy: mixing (hydrophobicity) E

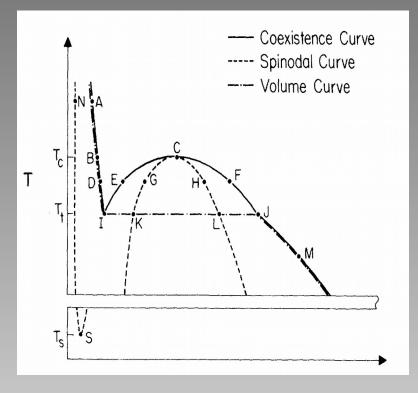
**Entropy:** chain entropy elasticity

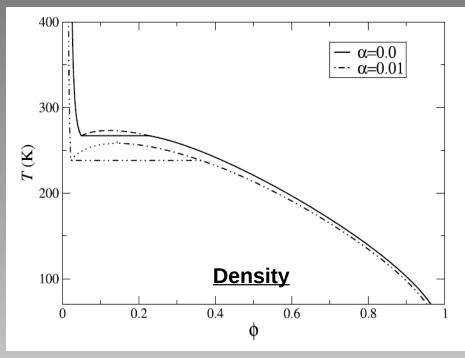

### **Phase transition – charged gels - schematic:**



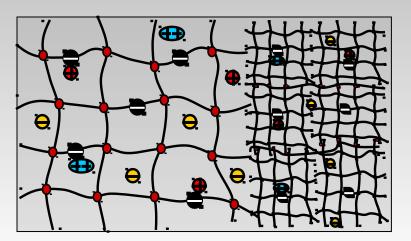


**Repulsion - monomers** 

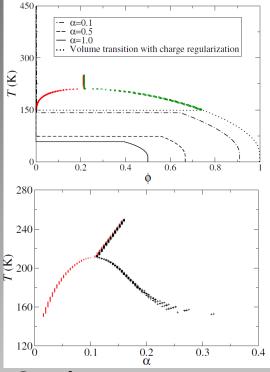

What does swell the gel? Electrostatics or free ion entropy?

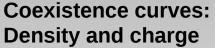


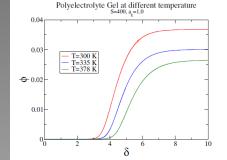

**Entropy - counterions** 

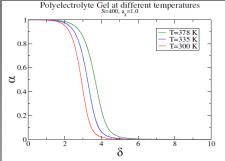

1. P. J. Flory, *Principles of Polymer Chemistry*, Cornell University Press 2. Jing Hua, Mithun K. Mitra, and M. Muthukumar JCP, 136, 134901 (2012).

### <u>Phase behaviour – charged gels - theory:</u>

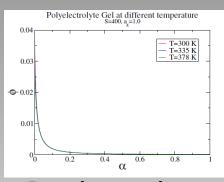


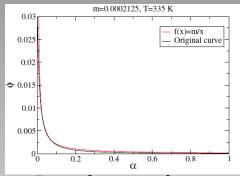





Swati Sen and A. Kundagrami, JCP, 143, 224904 (2015)

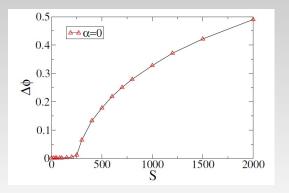



### Polyelectrolyte gels: equilibrium properties:



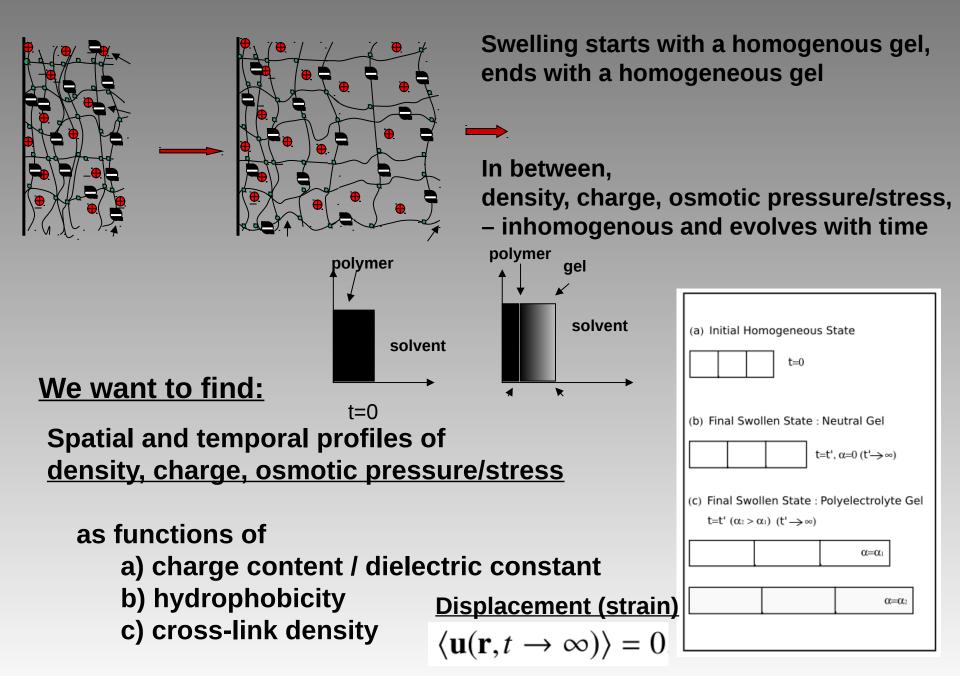



### Density and charge vs. Coulomb strength






Density vs. charge: Density vs. charge: invariant with Coulomb strength; product is constant



Collapse volume change with crosslink density: Critical exponent?

Unpublished: PhD student: Swati Sen

### <u>Swelling kinetics of a charged gel – Aim of study:</u>



### Effective Bulk Modulus of a Polyelectrolyte (PE) Gel:

$$\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} = \mathbf{\nabla} \cdot \tilde{\boldsymbol{\sigma}} - f \frac{\partial \mathbf{u}}{\partial t}$$

### **Bulk Modulus Method**

Aim: To find an effective bulk modulus for the Polyelectrolyte gel from the kinetics of relaxation of osmotic stress

Swati Sen and A. Kundagrami, JCP, 143, 224904 (2015).

**Stress Relaxation Method** 

Jen

 $\frac{\phi_f}{1 - \frac{\partial u}{\partial x}}$ 

S,T)

Acknowledgment: T. Tanaka and D. J. Fillmore, JCP, 70, 1214 (1979), E. S. Matsuo and T. Tanaka, JCP, 89, 1695 (1988)

### Polyelectrolyte gel - free energy:

$$f_s = \frac{\phi}{N} \log \phi + \phi_c \log \phi_c + \phi_s \log \phi_s$$

$$f_{sa} = [\alpha \log \alpha + (1 - \alpha)\log(1 - \alpha)]\phi$$

$$f_{\chi} = \chi \phi \phi_{s} \quad \text{FLORY} \quad \text{SALT FREE}$$

$$f_{el} = 2\pi \alpha^{2} \ell_{B} \phi^{2} \frac{N^{2/3}}{\left[\frac{3^{4/3} \pi^{7/6}}{2^{5/3}} \phi^{2/3} + \tilde{\kappa}^{2} N^{2/3}\right]}$$

$$f_{fl,i} = -\frac{1}{4\pi} \left[ \log(1+\tilde{\kappa}) - \tilde{\kappa} + \frac{1}{2}\tilde{\kappa}^2 \right]$$

 $f_{elast} = \frac{3}{2} S \phi_0^3 \left[ \left( \frac{\phi}{\phi_0} \right)^{1/3} - \frac{\phi}{\phi_0} + \frac{1}{3} \frac{\phi}{\phi_0} \ln \frac{\phi}{\phi_0} \right]$ 

 $f_{ad} = -(1-\alpha)\phi \tilde{\ell}_{R}\delta$ 

$$\phi = nN\ell^{3}/\Omega$$
  

$$\phi_{c} = \alpha nN\ell^{3}/\Omega$$
  

$$\phi + \phi_{c} + \phi_{s} = 1$$
  

$$\tilde{\kappa}^{2} = 4\pi \tilde{\ell}_{B} \alpha \phi$$

Lever rule  

$$\phi = x\phi^a + (1-x)\phi^b$$

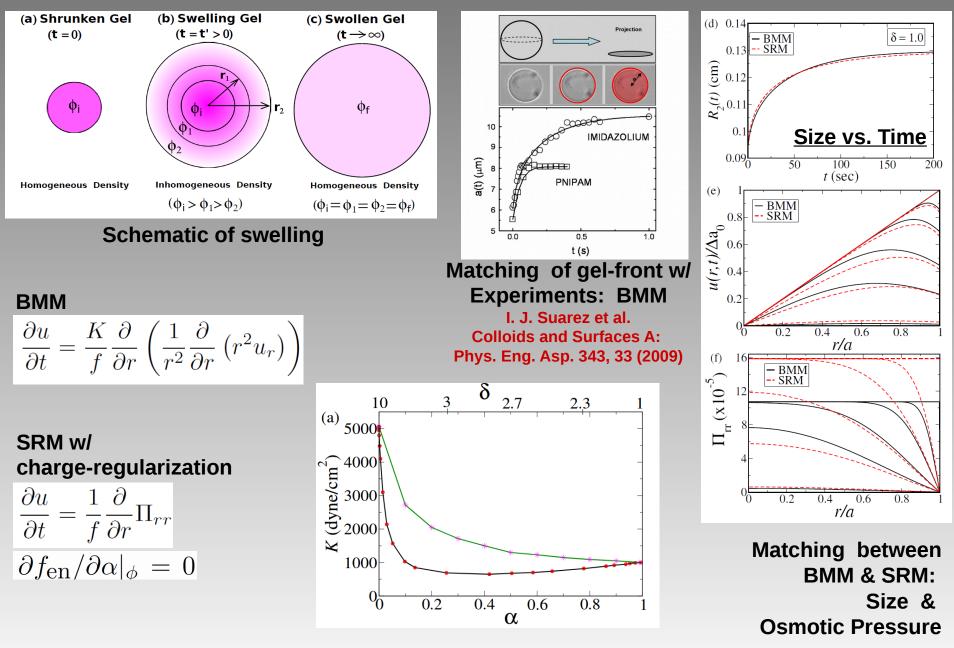
Minimize the TOTAL free energy (the sum of both coexisting phases), w.r.t. 4 variables – 2 densities, 2 charges of two phases.

 $f = f_s + f_{sa} + f_{\gamma} + f_{el} + f_{ad} + f_{fl,i}$ 

**Osmotic pressure from free energy of a PE gel:** 

$$\Pi(\phi, \alpha, \chi, S, T)$$

### Polyelectrolyte gel


$$\sigma_{xx} = \frac{\kappa_B T}{\nu_c} \bigg[ -\phi - \ln(1 - (1 + \alpha)\phi) - \chi \phi^2 (1 + \alpha) + \frac{\kappa_b^2}{2\phi_0^2} \bigg] + \frac{1}{4\pi} \bigg\{ \ln(1 + \tilde{\kappa}) - \frac{\kappa_b^2}{2(1 + \tilde{\kappa})} - \frac{\kappa_b^2}{2} \bigg\} + \frac{2\pi b \alpha^2 N^{\frac{2}{3}} \tilde{l}_B}{3} \frac{\phi^{8/3}}{(b\phi^{2/3} + N^{\frac{2}{3}} \tilde{\kappa}^2)^2} \bigg],$$

### Polymer (uncharged) gel

$$\sigma_{xx} = \pi_{\text{os}} = \frac{K_B T}{\nu_c} \Big[ -\phi - \ln(1-\phi) - \chi \phi^2 + S\phi_0^3 \left\{ \frac{\phi}{2\phi_0} - \left(\frac{\phi}{\phi_0}\right)^{\frac{1}{3}} \right\} \Big].$$

Swati Sen and A. Kundagrami, JCP, 143, 224904 (2015).

### Swelling of PE gels – variable degree of ionization:



Swati Sen and A. Kundagrami, JCP, 147, 174901 (2017)

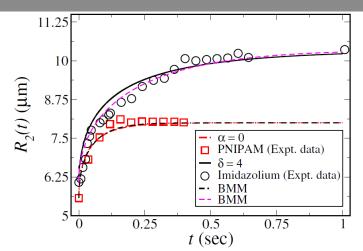
Analytical expression for the bulk modulus:

$$\Pi = \Pi_0 + K\left(\frac{\partial u}{\partial r} + 2\frac{u}{r}\right) \longrightarrow K(\phi, \alpha, \chi, S)$$

Expand  $\Pi_{rr}$  in powers of  $\partial u/\partial r$ 

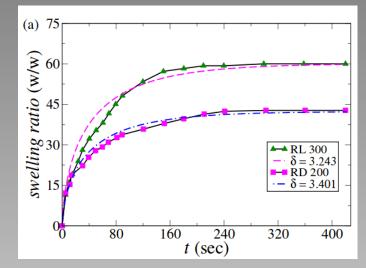
 $b\phi^{2/3} << N^{2/3}\tilde{\kappa^2}$  for  $\phi << 1$ 

**Replace the polymer density by:**  $\phi(r,t) = \phi_f / \{(1 - \partial u / \partial r)(1 - u/r)^2\}$ 


Taylor series expansion of:  $(1 - \partial u/\partial r)^{-1}(1 - u/r)^{-2}$ 

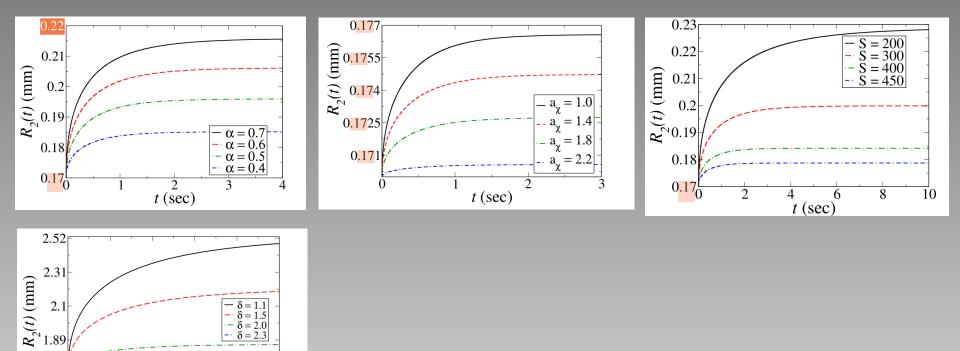
**Collect the coefficient of:**  $(\partial u/\partial r + 2u/r)$ 

$$\begin{split} K(\phi,\alpha,\chi,S) &= \frac{K_B T}{\nu_c} \Big[ -\phi + \frac{\phi(1+\alpha)}{1-\phi(1+\alpha)} - 2\chi(1+\alpha)\phi^2 \\ &+ S\phi_0^3 \Big\{ \frac{\phi}{2\phi_0} - \frac{1}{3} \Big( \frac{\phi}{\phi_0} \Big)^{\frac{1}{3}} \Big\} + \frac{1}{4\pi} \Big\{ \frac{\tilde{\kappa}}{4(1+\tilde{\kappa})} \\ &+ \frac{\tilde{\kappa}^2}{4(1+\tilde{\kappa})^2} - \frac{\tilde{\kappa}}{4} \Big\} + \frac{\frac{\pi^{7/6}3^{4/3}}{2^{5/3}} \phi^{2/3}}{36\pi N^{\frac{2}{3}} \tilde{l}_B} \Big]. \quad (4.2) \end{split}$$


### Swati Sen and A. Kundagrami, JCP, 147, 174901 (2017)

### <u>Matching with experiments – variable degree of ionization:</u>




<u>Size vs. Time</u>

Matching of gel-front w/ Experiments: BMM I. J. Suarez et al. Colloids and Surfaces A: Phys. Eng. Asp. 343, 33 (2009) Size vs. Time



Matching of gel-front w/ Experiments: SRM S. Ghosh Roy, U. Halder, and P. De, ACS Appl. Materials & Interfaces 6, 4233 (2014)

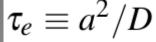
| Gels   | RD200 | RL300 | PNIPAM | Imidazolium-minigels |
|--------|-------|-------|--------|----------------------|
| S      | 550   | 500   | 500    | 400                  |
| $\chi$ | 1.02  | 0.54  | 0.6    | 0.54                 |
| δ      | 3.401 | 3.243 | 50     | 4                    |



1.89

1.68

 $\overline{0}$ 


50

100 150 t (sec)

200

250

### Elasticity, Chemical mismatch, diffusion – Timescale and Diffusivity:



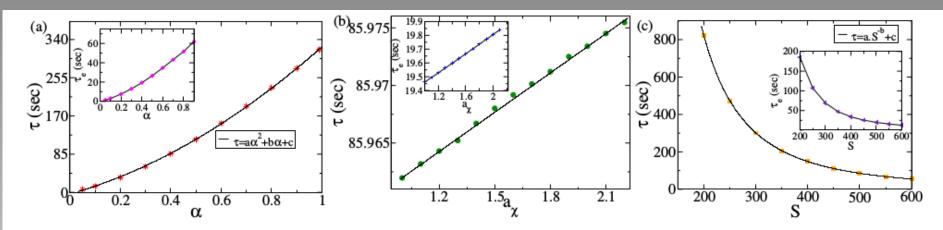



Fig. 1 Fixed degree of deformation (10%), fixed charge case : This plot shows the variation of  $\tau$  with  $\alpha$ ,  $a_{\chi}$  and S.

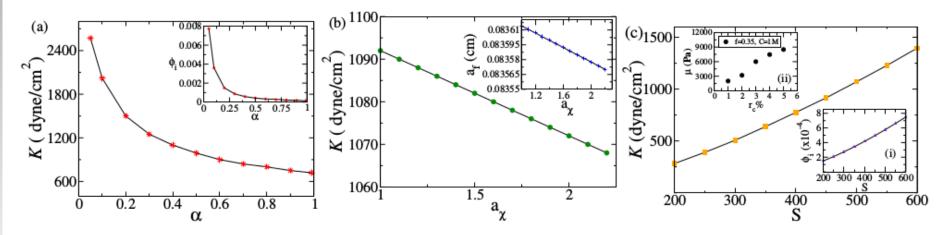
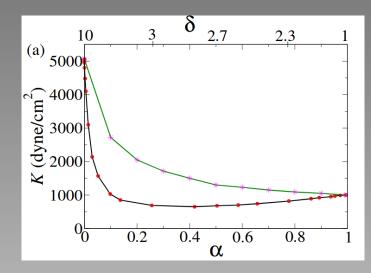
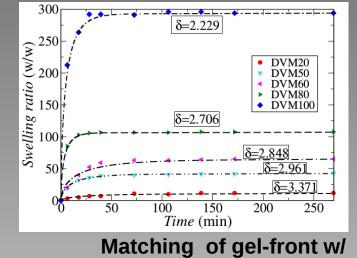
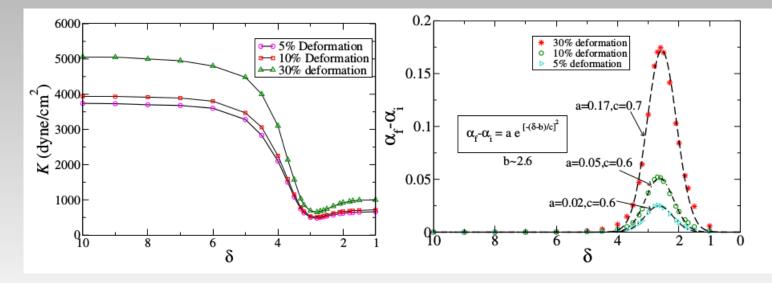





Fig. 2 Fixed degree of deformation (10%), fixed charge case : This plot shows the variation of K with  $\alpha$ ,  $a_{\chi}$  and S.


### Swati Sen, Ananya Krishnan and A. Kundagrami, Unpublished

### <u> Elasticity, Chemical mismatch, diffusion - Miscellaneous:</u>



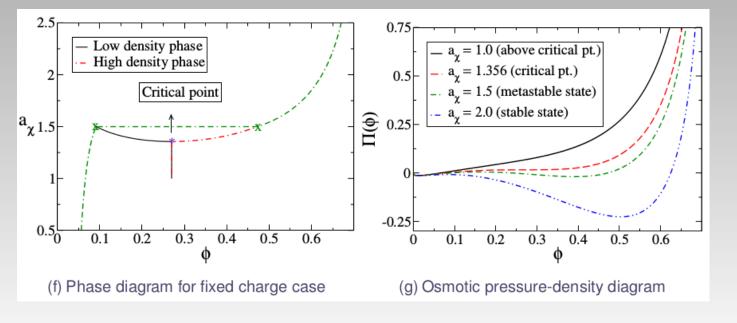


Experiments: SRM S. Ghosh Roy, U. Halder, and P. De, ACS Appl. Materials & Interfaces 6, 4233 (2014)

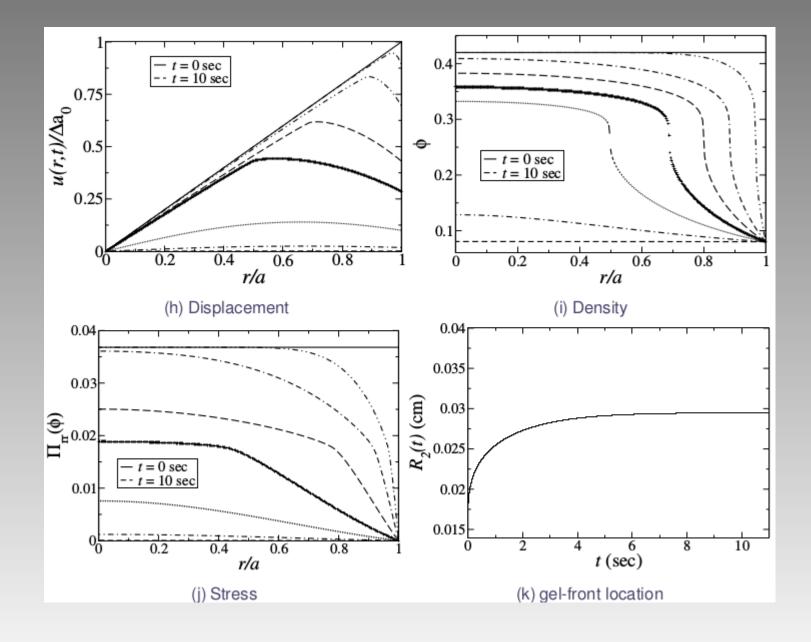


Swati Sen, Ananya Krishnan and A. Kundagrami, Unpublished

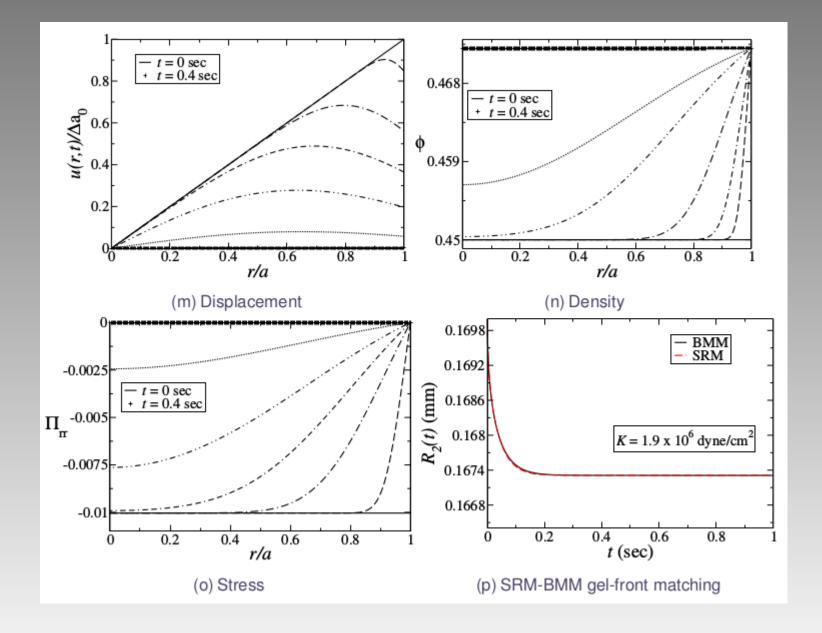
### <u>Charge of a gel – analytical expression:</u>


**PE gel** 

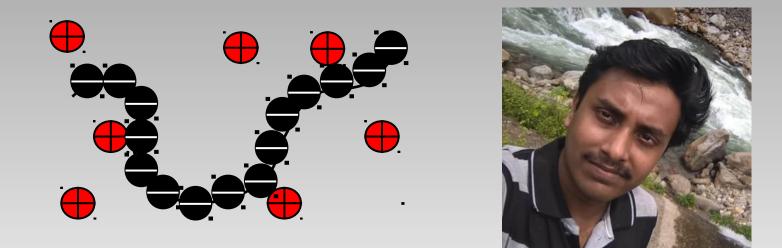
$$\alpha(\delta, \tilde{l}_B, \chi, \phi) = \frac{1}{2\phi(1 - e^{1 + 2(\delta \tilde{l}_B - \chi\phi)})} [1 + e^{1/2 + (\delta \tilde{l}_B - \chi\phi)}]$$


$$-\sqrt{(1+e^{1/2+(\delta \tilde{l}_B-\chi\phi)})(e^{1/2+(\delta \tilde{l}_B-\chi\phi)}+(1-2\phi)^2+4\phi(1-\phi)e^{1+2(\delta \tilde{l}_B-\chi\phi)})]}$$

$$f = \frac{-(\tilde{c}_s + e^{-\delta \tilde{l}_B}) + \sqrt{(\tilde{c}_s + e^{-\delta \tilde{l}_B})^2 + 4\tilde{\rho}e^{-\delta \tilde{l}_B}}}{2\tilde{\rho}}$$

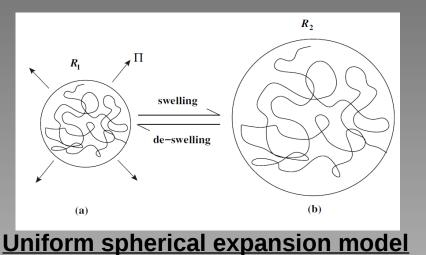

### Single PE chain




### <u>Swelling close to the critical point – slowing down:</u>



### <u>Deswelling:</u>




# Kinetics of swelling and collapse of a <u>single polymer chain</u>



**Graduate Student: Soumik Mitra (Poster)** 

### Equation of motion – osmotic and viscous forces:



Swelling and collapse of:

<u>Single, isolated, flexible</u> polyelectrolyte (PE) chain

EOM for surface element – osmotic stress and viscous force

$$\sigma_s \Delta S \frac{d^2 R}{dt^2} = -\zeta \Delta S \frac{dR}{dt} + \Pi \Delta S$$

Osmotic stress obtained through the free energy

$$\Pi = -\left(\frac{\partial F}{\partial V}\right)_{N,T} = -\frac{1}{4\pi R^2} \frac{\partial F}{\partial R} \bigg|_{N,T}$$

# Free energy $F(\tilde{l}_1, f, N, T)$

 $\tilde{l}_1 = \left(\frac{6}{Nl^2}\right) R_{g_1}^2$ 

### **Equation of Motion:**

$$\zeta \frac{d\tilde{l}_1}{dt} + \frac{1}{\pi} \left(\frac{6}{Nl^2}\right)^2 \frac{\partial F}{\partial \tilde{l}_1} = 0$$

Soumik Mitra and A. Kundagrami, Macromolecules, 50, 2504 (2017)

### <u>A free-energy to derive the osmotic pressure:</u>

$$F(\tilde{l}_1, f, N, T)$$

$$\begin{split} F_{1} &= f \log f + (1 - f) \log(1 - f) \\ F_{2} &= (f\tilde{\rho} + \tilde{c}_{s}) \log(f\tilde{\rho} + \tilde{c}_{s}) + \tilde{c}_{s} \log \tilde{c}_{s} - (f\tilde{\rho} + 2\tilde{c}_{s}) \\ F_{3} &= -\frac{1}{3}\sqrt{4\pi}\tilde{l}_{B}^{3/2}(f\tilde{\rho} + 2\tilde{c}_{s})^{3/2} \\ F_{4} &= -(1 - f)\delta(l_{B}/l) \\ F_{5} &= \frac{3}{2N}[\tilde{l}_{1} - 1 - \log\tilde{l}_{1}] + \frac{4}{3}\left(\frac{3}{2\pi}\right)^{3/2}\frac{w}{\sqrt{N}}\frac{1}{\tilde{l}_{1}^{3/2}} + \frac{w_{3}}{N\tilde{l}_{1}^{3}} + 2\sqrt{\frac{6}{\pi}}f^{2}\tilde{l}_{B}\frac{N^{1/2}}{\tilde{l}_{1}^{1/2}}\Theta_{0}(a) \\ \Theta_{0}(a) &= \frac{\sqrt{\pi}}{2}\left(\frac{2}{a^{5/2}} - \frac{1}{a^{3/2}}\right)\exp(a)\operatorname{erfc}(\sqrt{a}) + \frac{1}{3a} + \frac{2}{a^{2}} - \frac{\sqrt{\pi}}{a^{5/2}} - \frac{\sqrt{\pi}}{2a^{3/2}} \\ a &= \tilde{\kappa}^{2}N\tilde{l}_{1}/6 \quad \tilde{\kappa}^{2} = 4\pi\tilde{l}_{B}(f\tilde{\rho} + 2\tilde{c}_{s}) \quad \tilde{l}_{B} = e^{2}/4\pi\epsilon\epsilon_{0}lk_{B}T \end{split}$$

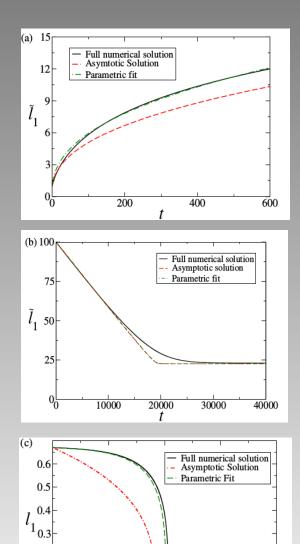
M. Muthukumar, JCP, 120, 9343 (2004) A. Kundagrami and M. Muthukumar, Macromolecules, 43, 2574 (2010)

### Analytical Expressions – Size vs. Time:

### Size vs. Time

### Swelling:

$$\tilde{l}_{1}^{5/2} - \tilde{l}_{10}^{5/2} = \frac{5}{2} \frac{T}{N\zeta'} \frac{2}{15} \sqrt{\frac{6}{\pi}} f^2 \tilde{l}_B N^{1/2} t \quad \text{Low-salt}$$


$$\tilde{l}_1^{7/2} - \tilde{l}_{10}^{7/2} = \frac{7}{8\zeta'} \left(\frac{6}{N\pi}\right)^{3/2} \frac{Tf^2}{f\tilde{\rho} + 2\tilde{c}_s} t \quad \frac{\text{High-salt}}{w' = w + \frac{f^2}{(f\tilde{\rho} + 2\tilde{c}_s)}}$$

### **De-swelling:**

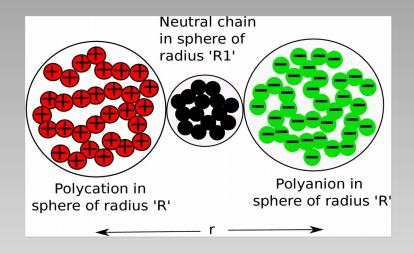
$$(\tilde{l}_1 - \tilde{l}_{1f}) \exp(\tilde{l}_1) = \exp(\tilde{l}_{10})(\tilde{l}_{10} - \tilde{l}_{1f}) \exp\left(-\frac{3T}{2N^2\zeta'}t\right)$$

### **Collapse:**

$$\tilde{l}_{1}^{7/2} - \tilde{l}_{10}^{7/2} = \frac{7}{2} \frac{2T}{N\zeta'} \left(\frac{3}{2\pi}\right)^{3/2} \frac{wt}{\sqrt{N}}$$



0.2


0.5

t

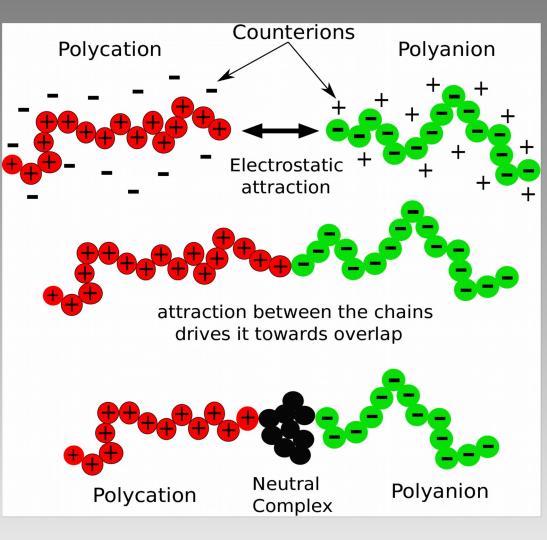
1.5

2

# <u>Complexation of oppositely charged</u> <u>polyelectrolytes</u>



### **Graduate Student: Soumik Mitra**


### <u>**Complexation – oppositely charged polyelectrolytes:**</u>

### Model

- Two oppositely charged PE chains driven towards mutual overlap due to <u>Coulomb attraction</u> and <u>free-ion</u> <u>entropy</u>
- Complex formation by <u>monomer-</u> <u>monomer adsorption</u> in the overlap process

### **Energetics:**

- (i)entropy of condensed counterions
- (ii)entropy of mobile counterions
- (iii)fluctuations of mobile ions
- (iv)adsorption energy of ion-pairs
- (v)configurational free energy of the polycation, polyanion, and complex
- (vi) electrostatic binding energy of complex



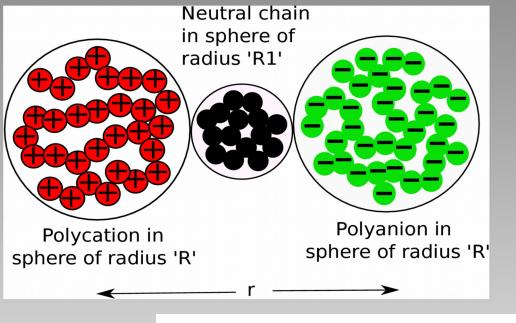
Schematic of the electrostatic attraction driven complexation of the polcation and polyanion

### Free energy of complexed polyelectrolytes:

$$\frac{F_{1}}{(N-n)k_{B}T} = 2\left[f\log f + (1-f)\log(1-f)\right]$$

$$\frac{F_{2}}{(N-n)k_{B}T} = 2\left(f + \frac{\tilde{c}_{s}}{\tilde{\rho}}\right)\log(f\tilde{\rho} + \tilde{c}_{s}) - \left(2f + \frac{\tilde{c}_{s}}{\tilde{\rho}}\right)$$

$$\frac{F_{3}}{(N-n)k_{B}T} = -\frac{1}{3}\sqrt{4\pi}\tilde{l}_{B}^{3/2}\frac{\left[2(f\tilde{\rho} + \tilde{c}_{s})\right]^{3/2}}{\tilde{\rho}}$$


$$\frac{F_{4}}{(N-n)k_{B}T} = -\left[(1-f)\delta_{1} + (1-f)\delta_{2}\right]\tilde{l}_{B}$$

$$\frac{F_{5,chain}}{(N-n)k_{B}T} = \frac{3}{2(N-n)}\left[\tilde{l}_{1} - 1 - \log\tilde{l}_{1}\right] + \frac{4}{3}\left(\frac{3}{2\pi}\right)^{3/2}\frac{w}{(N-n)^{1/2}}\frac{1}{\tilde{l}_{1}^{3/2}} + \frac{w_{3}}{(N-n)\tilde{l}_{1}^{3}} + 2\sqrt{\frac{6}{\pi}}f^{2}\tilde{l}_{B}\frac{(N-n)^{1/2}}{\tilde{l}_{1}^{1/2}}\Theta_{0}(a)$$

$$\frac{F_{5,complex}}{(N-n)k_{B}T} = \frac{3}{2(N-n)}\left[\tilde{l}_{2} - 1 - \log\tilde{l}_{2}\right] + \frac{4}{3}\left(\frac{3}{2\pi}\right)^{3/2}\frac{n^{1/2}}{(N-n)}\frac{w}{\tilde{l}_{2}^{3/2}} + \frac{w_{3}}{(N-n)\tilde{l}_{2}^{3}}$$

### The uniform sphecrical model for complexation:

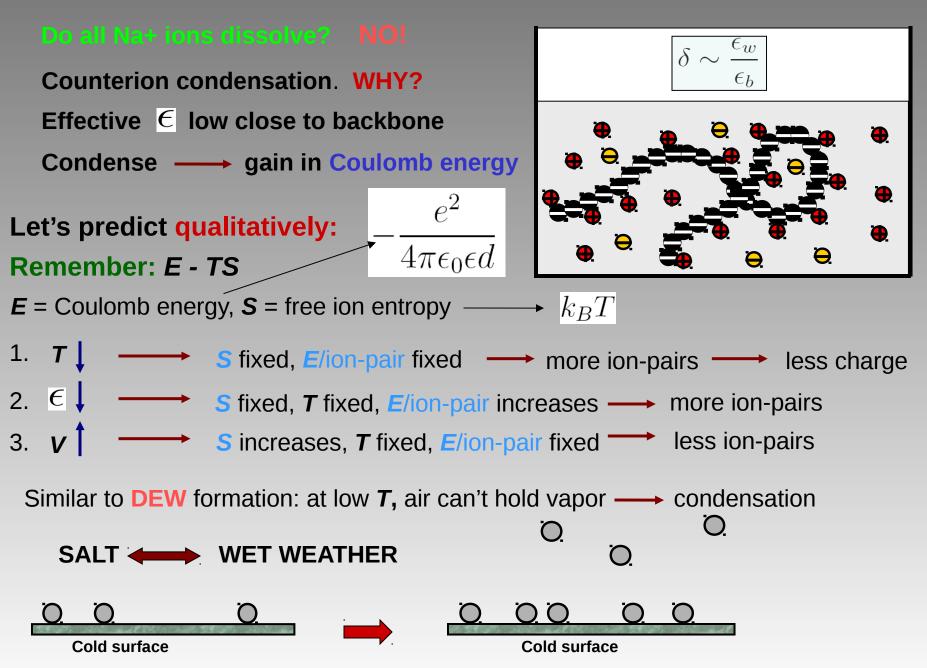
- the two oppositely charged chain interacts via the Yukawa potential
- $\bigcirc$  PE chains are considered to be interacting spheres, within the DLVO theory



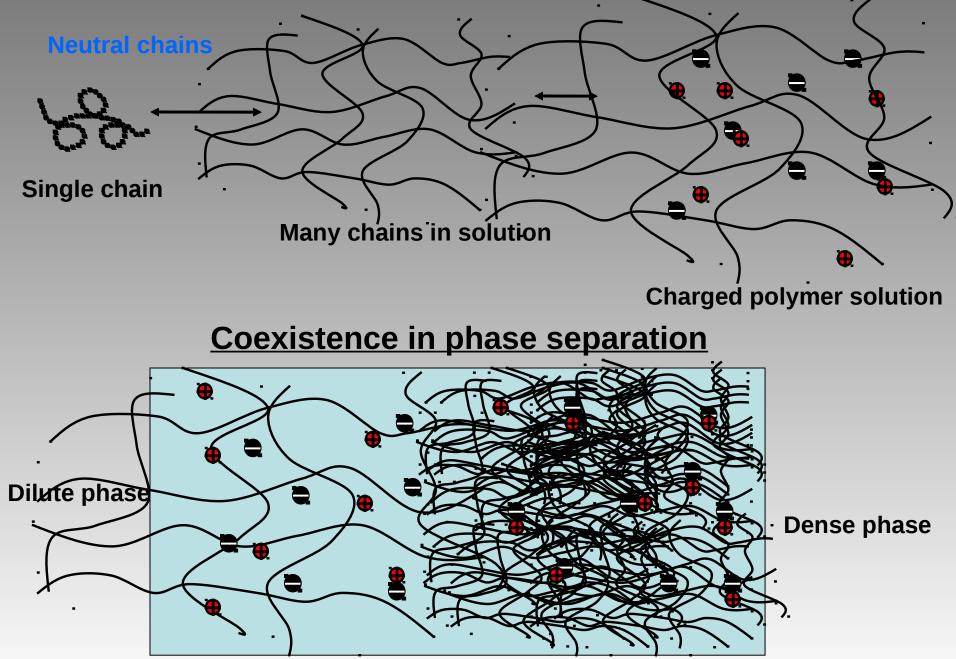
$$\frac{F_6}{(N-n)k_BT} = (N-n)f^2\tilde{l}_B \left(\frac{\exp[\tilde{\kappa}\tilde{R}]}{1+\tilde{\kappa}\tilde{R}}\right)^2 \left\{\frac{\exp[-\tilde{\kappa}\tilde{r}]}{\tilde{r}}\right\}$$

R -radius of the spheres encapsulating the PE chains

r -centre-to-centre distance between the two PE chains


### **Conclusions:**

Swelling of polyelectrolyte systems – both gels and isolated chains


 can be treated in the same footing – motion of polymer through the solvent – osmotic stress vs. viscous damping

- 2. Motion of small-ion charge species much faster than polymer:
- charge is regularized (self-adjusted) all along the kinetics
- 2. Swelling of a polymer gel: for small deformation is <u>diffusive</u>
   single chain: <u>sub-diffusive</u>
- **3. Effective <b>bulk-modulus of polyelectrolyte gels decreases with charge** - small deformation
- 4. Single polyelectrolyte chain:
  - a) <u>like-charge repulsion → swelling, entropy → de-swelling,</u> <u>hydrophobicity → collapse</u>
  - b) chain swells faster and farther for higher temperature
  - c) de-swells faster and deeper for higher salt
  - d) kinetics is slower for higher molecular weight
  - e) self-consistent dependency between size and charge strong in the vicinity of the Gaussian size

### Charged polymers – energy and entropy:



## Polymer solutions (many chains) - schematic:



Polymer solutions (many chains) - free energy:

SALT FREE

$$f_s = \frac{\phi}{N} \log \phi + \phi_c \log \phi_c + \phi_s \log \phi_s$$

$$f_{sa} = [\alpha \log \alpha + (1 - \alpha)\log(1 - \alpha)]\phi$$

$$f_{\chi} = \chi \phi \phi_s$$

FL

fe

$$l = 2\pi \alpha^2 \ell_B \phi^2 \frac{N^{2/3}}{\left[\frac{3^{4/3} \pi^{7/6}}{2^{5/3}} \phi^{2/3} + \tilde{\kappa}^2 N^{2/3}\right]}$$

 $f_{fl,i} = -\frac{1}{4\pi} \left| \log(1+\tilde{\kappa}) - \tilde{\kappa} + \frac{1}{2}\tilde{\kappa}^2 \right|$ 

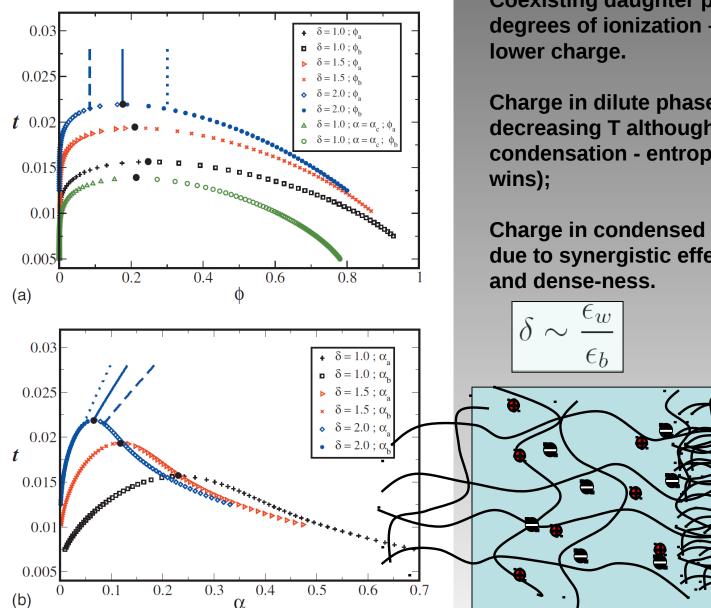
 $f_{ad} = -(1-\alpha)\phi \tilde{\ell}_B \delta$ 

$$\phi = nN\ell^{3}/\Omega$$
  

$$\phi_{c} = \alpha nN\ell^{3}/\Omega$$
  

$$\phi + \phi_{c} + \phi_{s} = 1$$
  

$$\tilde{\kappa}^{2} = 4\pi \tilde{\ell}_{B} \alpha \phi$$


Lever rule  

$$\phi = x\phi^a + (1-x)\phi^b$$

Minimize the TOTAL free energy (the sum of both coexisting phases), w.r.t. 4 variables – 2 densities, 2 charges of two phases.

ORY 
$$f = f_s + f_{sa} + f_{\chi} + f_{el} + f_{ad} + f_{fl,i}$$

M. Muthukumar, J. Hua, and A. Kundagrami JCP, 132, 084901 (2010).



**Coexisting daughter phases have different** degrees of ionization – denser phase has

Charge in dilute phase increases w/ decreasing T although lower T favours more condensation - entropy in dilute Solution

Charge in condensed phase decreases w/ T due to synergistic effects from T

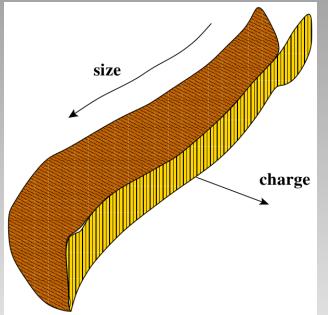
M. Muthukumar, J. Hua, and A. Kundagrami JCP, 132, 084901 (2010).

### Charge regularization:

**Assumption:** Motion of counterions much faster than that of monomers

- **1.** Counterions re-adjust themselves with virtually frozen configuration of polymer
- 2. Gel is stable with respect to counterion density variation chemical equilibrium

<u>Kinetics</u>: Downhill in free energy with size But, minimum in charge


**General expression:** 

$$\left. \frac{\partial F}{\partial \tilde{l}_1} \right|_{N,T} = \left. \frac{\partial F}{\partial \tilde{l}_1} \right|_{f,N,T} + \left. \frac{\partial F}{\partial f} \right|_{\tilde{l}_1,N,T} \left( \frac{\partial f}{\partial \tilde{l}_1} \right)$$

**Special condition applicable to this system:** 

$$\left. \frac{\partial F}{\partial f} \right|_{\tilde{l}_1, N, T} = 0$$

### Expression of derivative of free energy for fixed charge applies!



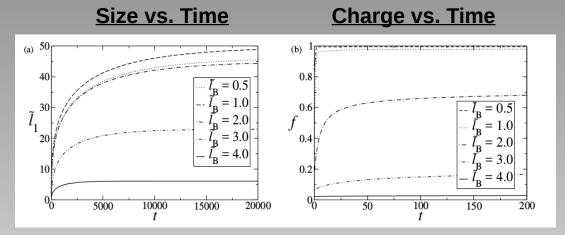
### Low- and high-salt limits – equations of motion:

### Low-salt limit:

$$\zeta' \frac{d\tilde{l}_1}{dt} + \frac{T}{N} \left\{ \frac{3}{2N} \left[ 1 - \frac{1}{\tilde{l}_1} \right] - 2 \left( \frac{3}{2\pi} \right)^{3/2} \frac{w}{\sqrt{N}} \frac{1}{\tilde{l}_1^{5/2}} - \frac{3}{N} \frac{w_3}{\tilde{l}_1^4} - \frac{2}{15} \sqrt{\frac{6}{\pi}} f^2 \tilde{l}_B \frac{N^{1/2}}{\tilde{l}_1^{3/2}} \right\} = 0$$

### **High-salt limit:**

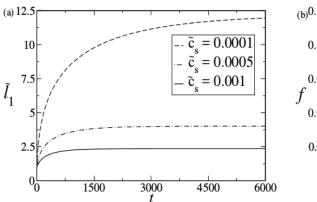
$$\zeta' \frac{d\tilde{l}_1}{dt} + \frac{T}{N} \left\{ \frac{3}{2N} \left[ 1 - \frac{1}{\tilde{l}_1} \right] - 2 \left( \frac{3}{2\pi} \right)^{3/2} \frac{w}{\sqrt{N}} \frac{1}{\tilde{l}_1^{5/2}} - \frac{3}{N} \frac{w_3}{\tilde{l}_1^4} - \frac{3}{2} \left( \frac{6}{N} \right)^{1/2} \frac{1}{\pi^{3/2}} \frac{f^2}{(f\tilde{\rho} + 2\tilde{c}_s)} \frac{1}{\tilde{l}_1^{5/2}} \right\} = 0$$


$$w' = w + \frac{f^2}{(f\tilde{\rho} + 2\tilde{c}_s)}$$

- **1.** Simpler differential equations analytical expressions for derivatives of free energy
- 2. In high-salt limit, electrostatic interaction is screened and becomes Short-ranged. Hence, just the two-body interaction parameter is re-scaled

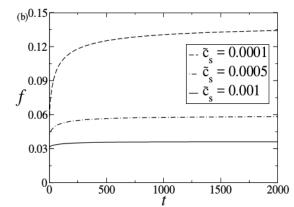
### Swelling profiles:

$$f = \frac{-(\tilde{c}_s + e^{-\delta \tilde{l}_B}) + \sqrt{(\tilde{c}_s + e^{-\delta \tilde{l}_B})^2 + 4\tilde{\rho}e^{-\delta \tilde{l}_B}}}{2\tilde{\rho}}$$

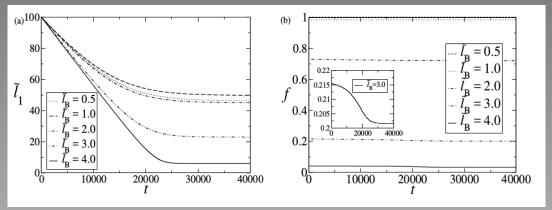

Expression of charge – expanded state A. Kundagrami and M. Muthukumar, Macromolecules, 43, 2574 (2010)



Swelling at different <u>temperatures</u>:


- 1. Swells faster and farther for higher *T.*
- 2. Lower temperature condensation reduces final size
- 3. Extended chain charge is not dependent on size

Swelling at different <u>salt</u>: (a)
1. Swells faster and farther for lower monovalent salt.
2. Extended chain – charge is not dependent on size

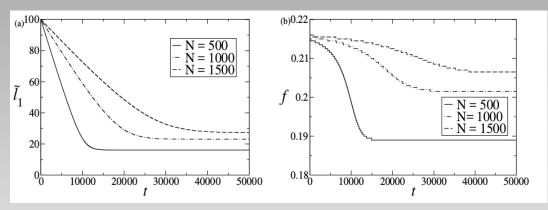



Size vs. Time

#### <u>Charge vs. Time</u>

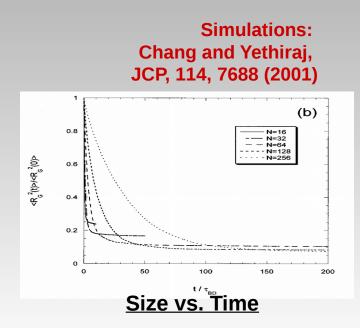


## De-swelling profiles:



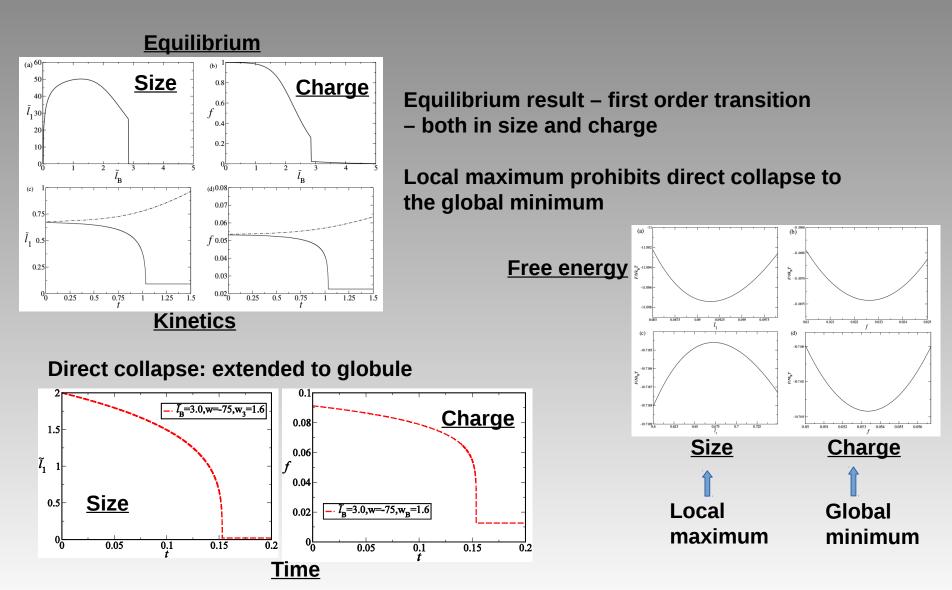

De-swelling at different <u>temperatures</u>:
1. De-swells faster and deeper for lower *T*

- 2. Lower temperature condensation reduces final size
- 3. Extended chain charge is not dependent on size

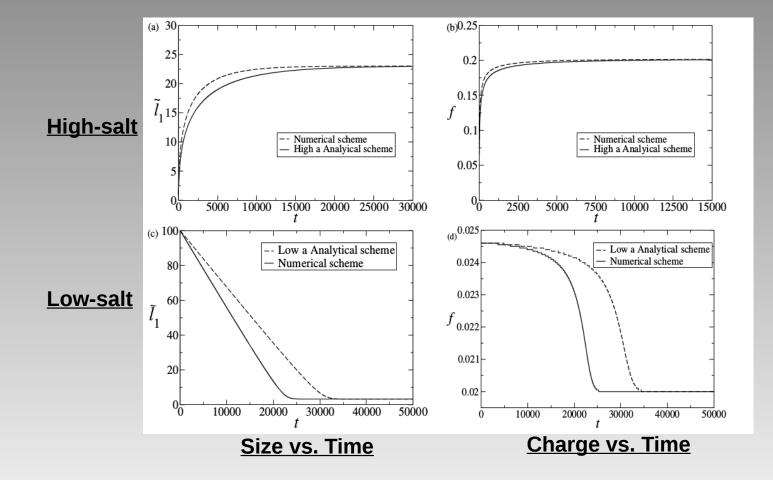

Size vs. Time

#### Charge vs. Time



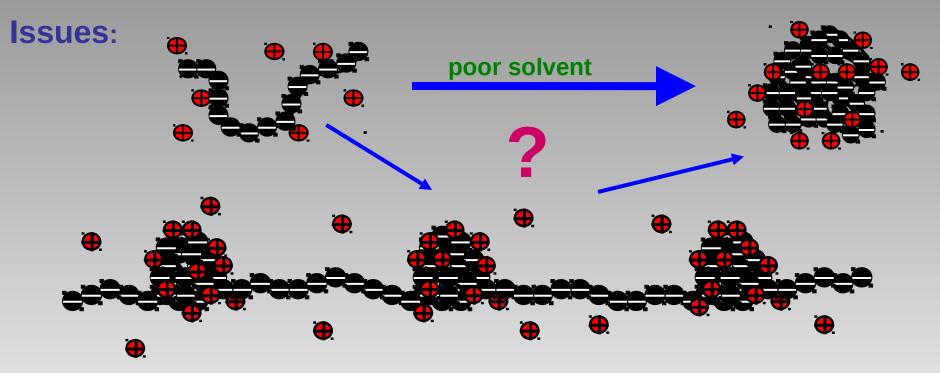

De-swelling for different molecular weights:

- **1.** De-swells slower for higher molecular weight
- 2. Matches qualitatively with experimental results with PMMA gels




## Collapse profiles:

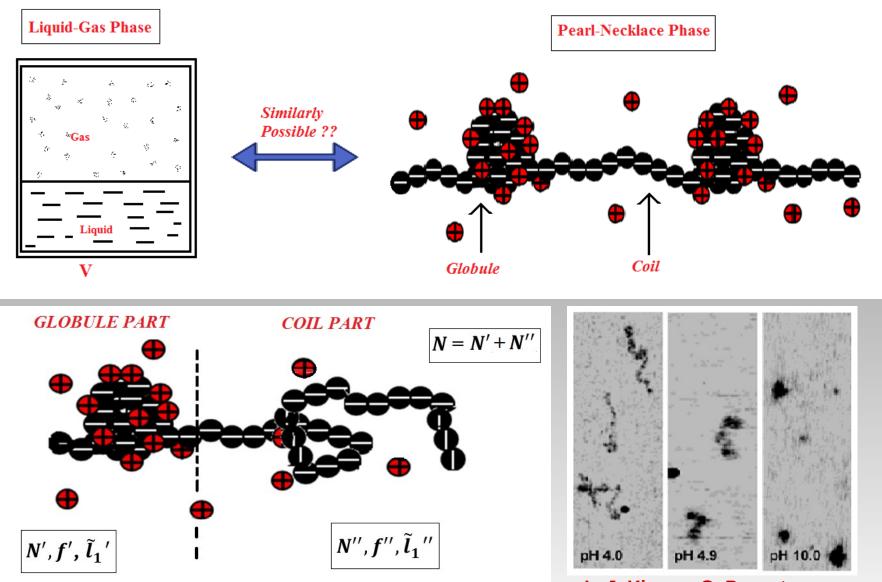
- 1. Poor solvent hydrophobic negative two-body parameter
- 2. Size goes below Gaussian \tilde{I}\_1 <1




#### <u>Limiting results – comparison to full numerical results:</u>

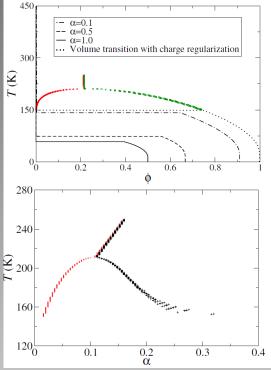


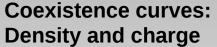
## <u>Charged chain in poor solvent – a pean-hecklace</u>

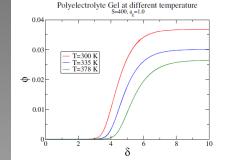


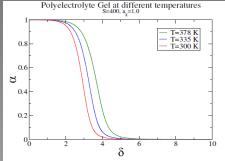



Simulations do not consider oily backbone — Low dielectric constant

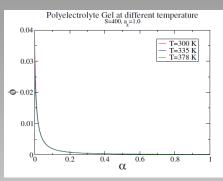

Can free ion entropy win over electrostatic energy gain of bound pairs? <u>IPhD student: Sourav Sadhukhan (joined August 2014)</u>

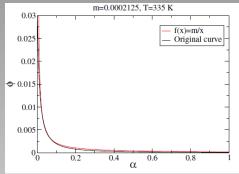

### Coexistence of coil and globule in a single chain – stability? :



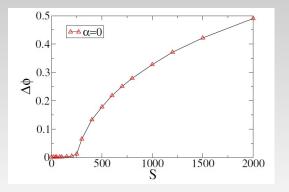


L. J. Kirwan, G. Papastavrou, M. Borkovec, Nano Lett., 4, 149 (2004)

## Polyelectrolyte gels: equilibrium results:



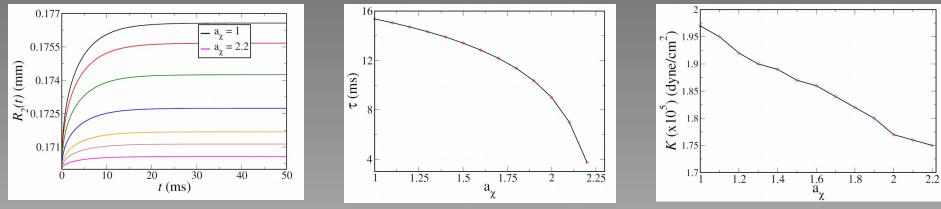





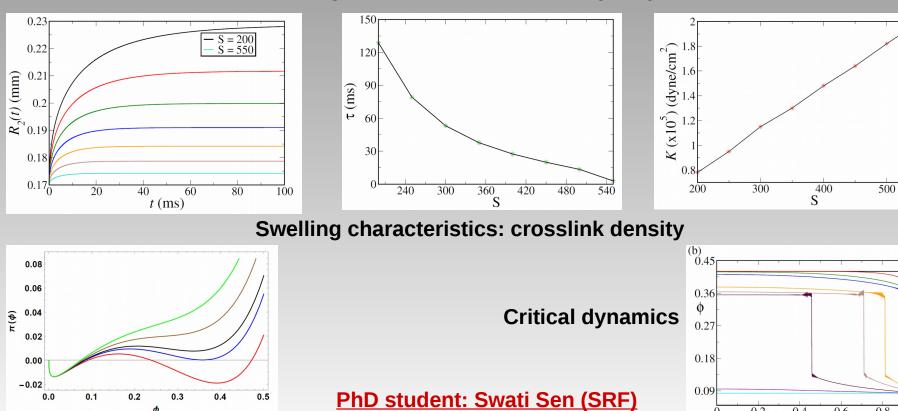




#### Density and charge vs. Coulomb strength






Density vs. charge: Density vs. charge: invariant with Coulomb strength; product is constant




Collapse volume change with crosslink density: Critical exponent?

PhD student: Swati Sen (SRF)



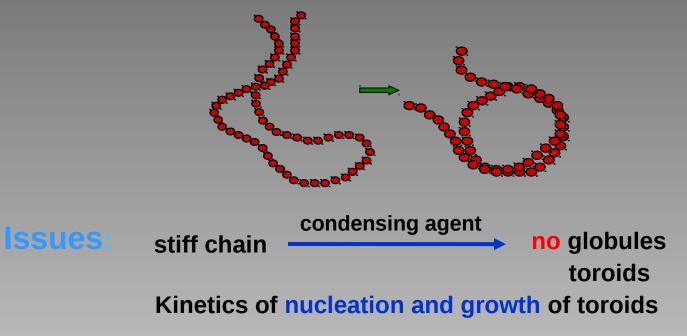
#### Swelling characteristics: solvent quality



550

0.8

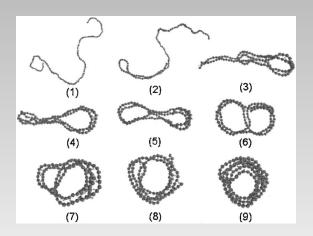
0.2


0

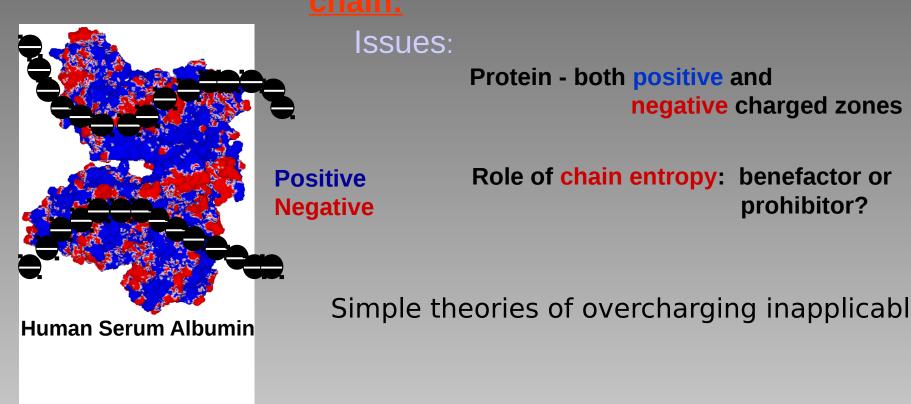
0.4

0.6 r/a

# **Future Directions**


#### Collapse of a semi-flexible chain - toroids:




All PE issues: free energy, phase diagrams – important for dsDNA



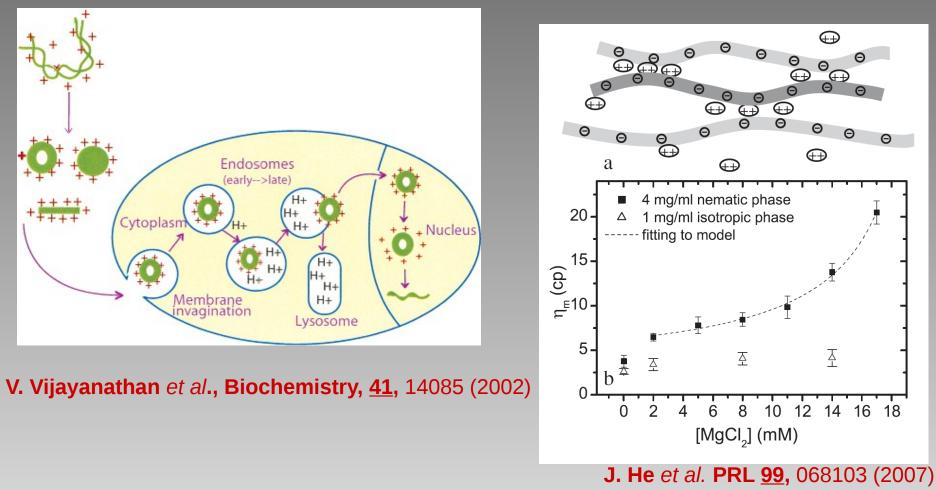
**Experiments: Nick Hud, Georgia Tech.** 



Simulations: Ou, Muthukumar, UMass



Possible aggregation and detachment depending on salt


negative charged zones

prohibitor?

**Examples:** aggregation of flexible anionic polyion (sodium polyacrylate) and **DOTAP** lipids

**Extensions:** anionic dendrimers-cationic polymers, colloid-anionic polymer

#### <u> Charge inversion and ion-bridging – applications, effects:</u>



**1. DNA uptake for gene therapy: condensing DNAs to nanoparticles** 

2. Reduced diffusivity of F-actin filaments near isotropic-nematic transition