Normal mode analysis of Coulomb particles in irregular traps

Amit Ghosal IISER Kolkata

Collaborators: Biswarup Ash (IISER K; now Weizmann) Chandan Dasagupta (IISc)

Objective:

- Insights on dynamics in systems with Coulomb interacting particles & disorder.
- Analysis of normal modes (Quenched + Instantaneous).
- Characterization: Density of modes, participation ratio & spectral statictics.
- How low lying inherent structures control long-time dynamic heterogeneity?

ICTS, ISPCM 2018

Model, Method & Parameters :

Study

• Static & Dynamics of Coulomb particles in irregular (& regular!) confinements.

Hamiltonian for the model system

$$\mathcal{H} = rac{q^2}{4\pi\epsilon} \sum_{i < j}^N rac{1}{|\vec{r_i} - \vec{r_j}|} + \sum_i^N V_{\mathrm{conf}}(r_i); \ \ r = |\vec{r}| = \sqrt{x^2 + y^2}$$

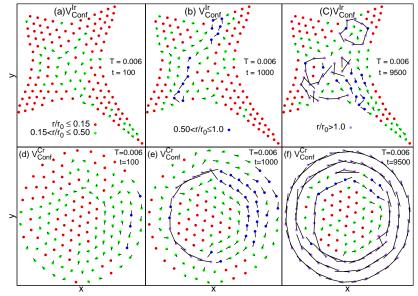
(a) Irregular: $V_{\text{conf}}^{\text{Ir}}(r) = a\{x^4/b + by^4 - 2\lambda x^2 y^2 + \gamma(x - y)xyr\}$, [Bohigas et.al, Phys. Rep. 223, 43 (93)] Broken spatial symmetry of $V_{\text{conf}}^{\text{Ir}}(r)$, together with chaotic motion of single particle in it, are taken as signatures of disorder (b) Circular: $V_{\text{conf}}^{\text{Cr}}(r) = \alpha r^2$, with $\alpha = m\omega^2/2$.

Computational Tools

Molecular dynamics (MD) and Classical (Metropolis) Monte Carlo (MC) with Simulated Annealing at finite T.

Displacements $[\Delta \vec{r}(t) = \{\vec{r}(t) - \vec{r}(0)\}]$ in low-T 'solid'

• Spatially correlated inhomogeneous motion at large t even at low T in irregular traps.



Amit Ghosal

Normal mode analysis of Coulomb particles in irregular traps

Take-home messages from spatio-temporal correlations:

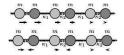
- 1. Crossover from 'solid'-like to 'liquid'-like behavior discerned studying independent observables (unique T_x found within tolerance).
- 2. No apparent distinction between T_X (within errorbars) in circular & irregular confinements.
- 3. Qualitative responses are more-or-less independent of N (for $100 \le N \le 500$) though there are differences in details.
- Intriguing motional signatures (e.g. <u>dynamic heterogeneity</u>) found.
- Nature of dynamic heterogeneity distinguishes the thermal crossover based on the type of confinement (e.g., circular vs. irregular)
- Multiple time-scales for relaxation identified.
 - Complex motion yields slow relaxations, akin to supercooled liquids.
- Access generic signatures of disordered dynamics in traps?
 - EPJB 86, 499, (2013); EPL 114, 46001 (2016); Phys. Rev. E, 96, 042105 (2017)

Normal Mode (NM) Analysis

Goal:

- Develop deeper insight into the dynamics of Coulomb particles in traps.
 - Addresses dynamic responses: how each particle proposes to move in a given configuration (remember phonon in crystals!)
 - Normal Modes: Construct 2N × 2N Hessian matrix

$$A = \left(\frac{\partial^2 H}{\partial r_{i\alpha} \partial r_{j\beta}}\right)$$

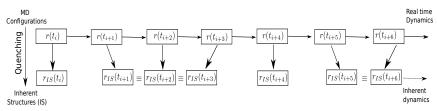


with INSTANTANEOUS configuration of N particles $\{(r_{1x}, r_{1y}), \cdots (r_{Nx}, r_{Ny})\}$ \Rightarrow results into Instantaneous Normal Modes (INM).

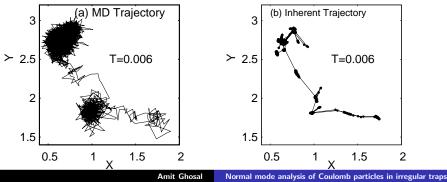
Eigenvalues of $A \rightarrow$ square of eigen frequencies ω_n $(n = 1, 2, 3, \dots, 2N)$ Eigenvector $e_n \rightarrow$ oscillation pattern of the particles in mode number n.

Quenched Normal Mode (QNM) Analysis

• Procedure to obtain the inherent structures from instantaneous configurations



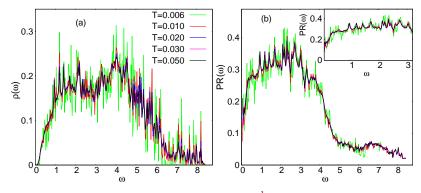
 \bullet Quenching effects on actual dynamics of particles \rightarrow get rid of small amplitude vibrations.



Analysis of Quenched Normal Modes (QNM)

QNM: Energy minimized configurations starting from equilibrium configurations at a T.

Density of states (DOS): Distribution of normal mode freq. with normalization $\int d\omega \rho(\omega) = 1$.



Participation ratio $PR(\omega_m) = \left[N \sum_{i=1}^{N} (\vec{e_i}(m) \cdot \vec{e_i}(m))^2\right]^{-1}$

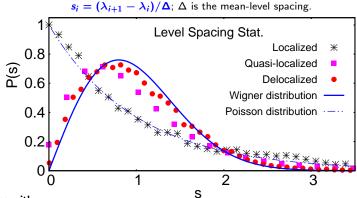
- $PR(\omega_m) < 0.05$: small (very low and high ω_m) \Rightarrow Localized modes.
- $PR(\omega_m) > 0.35$: Large (intermediate ω_m) \Rightarrow Delocalized modes.

quasi-localized modes for 0.05 < PR < 0.35 ?

Analysis of QNM: Spectral Statistics

Localized, quasi-localized and delocalized modes.

Distribution of spacings s between the eigenvalues (λ) of the Hessian matrix.

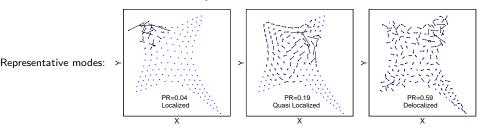


For modes with

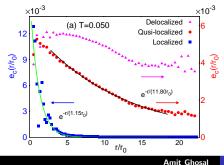
- **PR**< 0.05 Poisson distribution ⇒ Localized modes.
- **PR**> 0.35 Wigner distribution ⇒ Delocalized modes.
- $0.05 < PR < 0.35 \Rightarrow P(s)$ intermediate between Poisson and Wigner distribution \Rightarrow Quasi-localized modes (established through Brody function test).

Analysis of QNM: Distribution of polarization vector

Localized, quasi-localized and delocalized



• Magnitude of polarization vector $n(\vec{r_i}) = |\vec{e}(\vec{r_i})|$; measure correlation $\langle e_c(\vec{r}) = n(\vec{r_i})n(\vec{r_i} + \vec{r}) \rangle$



- Delocalized modes: Weak r dependence.
- Localized modes: Sharp fall. $e_c \rightarrow 0$ by $r \sim r_0$.
- Quasi-localized modes:

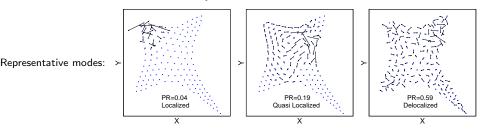
 $e_c(r) \propto \exp[-r/\xi_{
m ql}]; \ \xi_{
m ql} \sim 11 r_0.$

Normal mode analysis of Coulomb particles in irregular traps

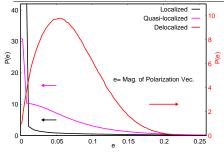
Analysis of QNM: Distribution of polarization vector

Amit Ghosal

Localized, quasi-localized and delocalized



• Distribution of the magnitude (e) of polarization vectors.



- Localized modes \Rightarrow Sharp peak at $e \sim 0$.
- Delocalized modes \Rightarrow Broad distribution.
- Quasi-localized modes \Rightarrow Peak at zero

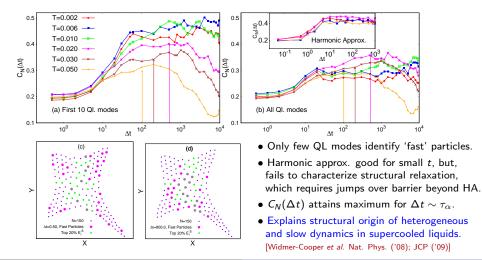
+ Long tail.

Normal mode analysis of Coulomb particles in irregular traps

Identify 'fast' particles at long time from quasi-loc modes

 $C_d(i, \Delta t) = 1$ only if *i* among top 20% particles with largest displacement during time $(t_0, t_0 + \Delta t)$; $C_e(i, t_0) = 1$ if *i* among top 20% of highest E_i ; Here, $E_i = \frac{1}{N_e} \sum_{m=1}^{N_e} |e_i(m)|^2$ with QNMs at t_0 ; $N_e \ll 2N$ (typically).

Define correlation: $C_N(\Delta t) = \sum_{i=1}^N \langle C_d(i, \Delta t) C_e(i, t_0) \rangle$

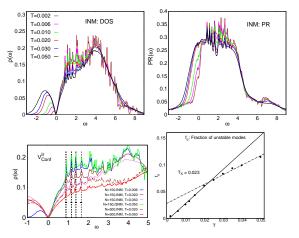


Amit Ghosal

Normal mode analysis of Coulomb particles in irregular traps

Analysis of Instantaneou Normal Modes (INM)

Hessian matrix evealuated from instantaneous equilibrium configurations !!



- Unstable mode (negative λ → imaginary ω) ⇒ configurational transitions over potential hills.
- Some stable (ω > 0) modes are robust, features peak in ρ(ω).
 [insensitive to T or N !!].
- Robust mode occur at similar ω in INM & QNM for different Ns!
- Identify T_X from *T*-dependence of fraction of unstable modes !!

• Comprehension of classical <u>Coulomb-glass</u> from NM analysis

- Intriguing motional signatures for confined and long-range (Coulomb) interacting particles!
- **2** Glassiness clarified through Normal mode analysis.
- Quasi-localized modes appraised via participation ratio and spectral analysis. Length-scale associated with quasi-localized mode extracted by cluster analysis.
- Instantaneous Normal modes identify the crossover temperature (T_X) for solid- to liquid-like behavior.
- Role of low lying quasi-localized modes elucidated in dictating the long-time dynamic heterogeneity.

Quasi-localized mode: Cluster analysis

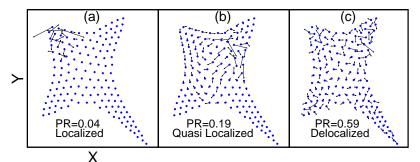
Quasi-localized modes:

- They lie in between localized and delocalized modes.
- Particles with significant magnitude of polarization vector are spatially clustered.

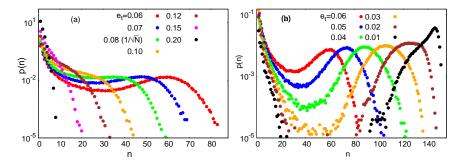
Can we make a statistical estimate of size of such clusters?

Two parameters: (1) Cut-off on magnitude of a polarization vector for it to be part of a cluster.

(2) Parameter to decide whether two particles are members of a gievn cluster. \sim average interparticle spacing



Probability of finding cluster of *n*-particles: P(n)



 As the cut-off (on the magnitude of polarization vector, to be considered a part of cluster) is increased, P(n) changes gradually from a bimodal curve to a monotonic and nearly exponential.

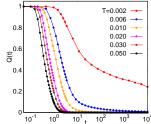
- P(n) found to be insensitive to T.
- Bimodality first occur for cut-off on polarization vector $e_c \sim \frac{1}{\sqrt{N}} \sim 0.07-0.08 \sim 10\%$ -Lindemann ratio, yielding a typical cluster size $\sim 8r_0 \sim \xi_{\rm ql}$.

Overlap function and structural relaxation time

 $Q(t) = \frac{1}{N} \sum_{i=1}^{N} W(|\vec{r}_i(t) - \vec{r}_i(0)|); \text{ where } W(r_i) = 1 \text{ if } r_i < r_{\text{cut}}, \& W(r_i) = 0 \text{ if } r_i > r_{\text{cut}}$ [Karmakar et al. ('14)]

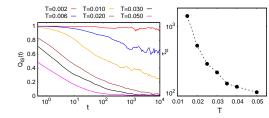
From MD configurations: [Ash, Chakrabarti & AG, PRE, 96, 42105]

- Small time decay due to vibrational motion, while long time decay corresponds to structural relaxation.
- The two step decay makes the extraction of structural relaxation time (τ_α) difficult, even erroneous!



Inherent structure space:

- Structural relaxation through transition from one inherent structure to another.
- Estimate (τ_{α}) from the area under the $Q_{IS}(t)$ vs. t curve for all \mathcal{T} (provided $Q_{IS}(t) \rightarrow 0$ at long time for that \mathcal{T}).
- τ_{α} increases rapidly as T is decreased.



Comparing trajectories from MD & Harmonic approx.

Comparing particle trajectories from full numerical simulations (molecular dynamics), with those from harmonic approximation:

