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Objective:

• Insights on dynamics in systems with Coulomb interacting particles & disorder.

• Analysis of normal modes (Quenched + Instantaneous).

• Characterization: Density of modes, participation ratio & spectral statictics.

• How low lying inherent structures control long-time dynamic heterogeneity?
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Model, Method & Parameters :

Study

• Static & Dynamics of Coulomb particles in irregular (& regular!) confinements.

Hamiltonian for the model system

H =
q2

4πǫ

N
∑

i<j

1

|~ri − ~rj |
+

N
∑

i

Vconf(ri ); r = |~r | =
√

x2 + y2

(a) Irregular:V Ir
conf

(r) = a{x4/b + by4 − 2λx2y2 + γ(x − y)xyr}, [Bohigas et.al, Phys. Rep. 223, 43 (93)]

Broken spatial symmetry of V Ir

conf
(r), together with chaotic motion of single particle in it, are taken as signatures of disorder

(b) Circular: VCr
conf

(r) = αr2, with α = mω2/2.

Computational Tools

Molecular dynamics (MD) and Classical (Metropolis) Monte Carlo (MC) with Simulated
Annealing at finite T .
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Displacements [∆~r (t) = {~r (t)− ~r (0)}] in low-T ‘solid’
• Spatially correlated inhomogeneous motion at large t even at low T in irregular traps.
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Take-home messages from spatio-temporal correlations:

1. Crossover from ‘solid’-like to ‘liquid’-like behavior discerned studying
independent observables (unique Tx found within tolerance).

2. No apparent distinction between TX (within errorbars) in circular &
irregular confinements.

3. Qualitative responses are more-or-less independent of N
(for 100 ≤ N ≤ 500) though there are differences in details.

Intriguing motional signatures (e.g. dynamic heterogeneity) found.

Nature of dynamic heterogeneity distinguishes the thermal crossover
based on the type of confinement (e.g., circular vs. irregular)

Multiple time-scales for relaxation identified.
• Complex motion yields slow relaxations, akin to supercooled liquids.

Access generic signatures of disordered dynamics in traps?

• EPJB 86, 499, (2013); • EPL 114, 46001 (2016); • Phys. Rev. E, 96, 042105 (2017)
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Normal Mode (NM) Analysis

Goal:

• Develop deeper insight into the dynamics of Coulomb particles in traps.

Addresses dynamic responses: how each particle proposes to
move in a given configuration (remember phonon in crystals!)

Normal Modes: Construct 2N × 2N Hessian matrix

A =

(

∂2H

∂riα∂rjβ

)

with INSTANTANEOUS configuration of N particles {(r1x , r1y ), · · · (rNx , rNy ))}

⇒ results into Instantaneous Normal Modes (INM).

Eigenvalues of A → square of eigen frequencies ωn (n = 1, 2, 3, · · · , 2N)

Eigenvector en → oscillation pattern of the particles in mode number n.
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Quenched Normal Mode (QNM) Analysis

• Procedure to obtain the inherent structures from instantaneous configurations
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• Quenching effects on actual dynamics of particles → get rid of small amplitude vibrations.
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Analysis of Quenched Normal Modes (QNM)

QNM: Energy minimized configurations starting from equilibrium configurations at a T .

Density of states (DOS): Distribution of normal mode freq. with normalization
∫

dωρ(ω) = 1.
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Participation ratio PR(ωm) =
[

N
∑N

i=1 (~ei (m) · ~ei (m))2
]−1

PR(ωm) < 0.05 : small (very low and high ωm) ⇒ Localized modes.

PR(ωm) > 0.35 : Large (intermediate ωm) ⇒ Delocalized modes.

quasi-localized modes for 0.05 <PR< 0.35 ?

Amit Ghosal Normal mode analysis of Coulomb particles in irregular traps



Analysis of QNM: Spectral Statistics

Localized, quasi-localized and delocalized modes.
Distribution of spacings s between the eigenvalues (λ) of the Hessian matrix.

si = (λi+1 − λi )/∆; ∆ is the mean-level spacing.
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For modes with

PR< 0.05 Poisson distribution ⇒ Localized modes.

PR> 0.35 Wigner distribution ⇒ Delocalized modes.

0.05 <PR< 0.35 ⇒ P(s) intermediate between Poisson and Wigner distribution
⇒ Quasi-localized modes (established through Brody function test).
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Analysis of QNM: Distribution of polarization vector
Localized, quasi-localized and delocalized

Representative modes:

PR=0.04
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Delocalized 

Y

X

• Magnitude of polarization vector n(~ri ) = |~e(~ri )|; measure correlation 〈ec (~r) = n(~ri )n(~ri + ~r)〉
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Localized • Delocalized modes: Weak r dependence.

• Localized modes: Sharp fall.
ec → 0 by r ∼ r0.

• Quasi-localized modes:

ec (r) ∝ exp[−r/ξql]; ξql ∼ 11r0.
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Analysis of QNM: Distribution of polarization vector
Localized, quasi-localized and delocalized

Representative modes:

PR=0.04
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• Distribution of the magnitude (e) of polarization vectors.
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• Localized modes ⇒ Sharp peak at e ∼ 0.

• Delocalized modes ⇒ Broad distribution.

• Quasi-localized modes ⇒ Peak at zero

+ Long tail.
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Identify ‘fast’ particles at long time from quasi-loc modes

Cd (i,∆t) = 1 only if i among top 20% particles with largest displacement during time (t0, t0 + ∆t);

Ce (i, t0) = 1 if i among top 20% of highest Ei ; Here, Ei = 1
Ne

∑Ne
m=1 |ei (m)|2 with QNMs at t0; Ne ≪ 2N (typically).

Define correlation: CN (∆t) =
∑

N

i=1〈Cd (i ,∆t)Ce (i , t0)〉
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• Only few QL modes identify ‘fast’ particles.

• Harmonic approx. good for small t, but,
fails to characterize structural relaxation,
which requires jumps over barrier beyond HA.

• CN(∆t) attains maximum for ∆t ∼ τα.

• Explains structural origin of heterogeneous
and slow dynamics in supercooled liquids.
[Widmer-Cooper et al. Nat. Phys. (’08); JCP (’09)]
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Analysis of Instantaneou Normal Modes (INM)

Hessian matrix evealuated from instantaneous equilibrium configurations !!
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fu: Fraction of unstable modes

TX = 0.023

f u

T

Unstable mode (negative λ →
imaginary ω) ⇒ configurational
transitions over potential hills.

Some stable (ω > 0) modes are
robust, features peak in ρ(ω).
[insensitive to T or N !!].

Robust mode occur at similar ω
in INM & QNM for different Ns!

Identify TX from T -dependence
of fraction of unstable modes !!
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Conclusions

• Comprehension of classical Coulomb-glass from NM analysis

1 Intriguing motional signatures for confined and long-range (Coulomb)
interacting particles!

2 Glassiness clarified through Normal mode analysis.

3 Quasi-localized modes appraised via participation ratio and spectral
analysis. Length-scale associated with quasi-localized mode extracted
by cluster analysis.

4 Instantaneous Normal modes identify the crossover temperature (TX )
for solid- to liquid-like behavior.

5 Role of low lying quasi-localized modes elucidated in dictating
the long-time dynamic heterogeneity.
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Quasi-localized mode: Cluster analysis
Quasi-localized modes:

They lie in between localized and delocalized modes.

Particles with significant magnitude of polarization vector are spatially clustered.

Can we make a statistical estimate of size of such clusters?

Two parameters: (1) Cut-off on magnitude of a polarization vector for it to be part of a cluster.

(2) Parameter to decide whether two particles are members of a gievn cluster.
∼ average interparticle spacing
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Probability of finding cluster of n-particles: P(n)
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As the cut-off (on the magnitude of polarization vector, to be considered a part of cluster)
is increased, P(n) changes gradually from a bimodal curve to a monotonic and nearly
exponential.

P(n) found to be insensitive to T .

Bimodality first occur for cut-off on polarization vector ec ∼ 1√
N

∼ 0.07-0.08 ∼

10%-Lindemann ratio, yielding a typical cluster size ∼ 8r0 ∼ ξql.
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Overlap function and structural relaxation time

Q(t) = 1
N

∑N
i=1 W (|~ri (t)− ~ri (0)|); where W (ri ) = 1 if ri < rcut, & W (ri ) = 0 if ri > rcut

[Karmakar et al. (’14)]

From MD configurations: [Ash, Chakrabarti & AG, PRE, 96, 42105]

Small time decay due to vibrational motion, while long
time decay corresponds to structural relaxation.

The two step decay makes the extraction of structural
relaxation time (τα) difficult, even erroneous!
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Inherent structure space:

Structural relaxation through transition
from one inherent structure to another.

Estimate (τα) from the area under the
QIS (t) vs. t curve for all T (provided
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Comparing trajectories from MD & Harmonic approx.

Comparing particle trajectories from full numerical simulations (molecular dynamics), with those
from harmonic approximation:

Harmonic Approx.
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