Integrable Field Theories

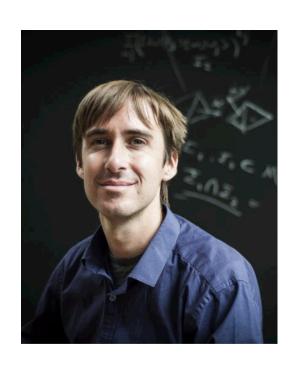
from

4d Chern-Simons Theory

Masahito Yamazaki

Aug 9, 2018, ICTS

Based on collaboration with Kevin Costello and Edward Witten



Based on collaboration with Kevin Costello and Edward Witten

Part I arXiv:1709.09993

Part II arXiv:1802.01579

Based on collaboration with Kevin Costello and Edward Witten

Part I arXiv:1709.09993

Part II arXiv:1802.01579

Part III to appear

Part IV to appear

Based on collaboration with Kevin Costello and Edward Witten

Part I arXiv:1709.09993 integrable

Part II arXiv:1802.01579

classical

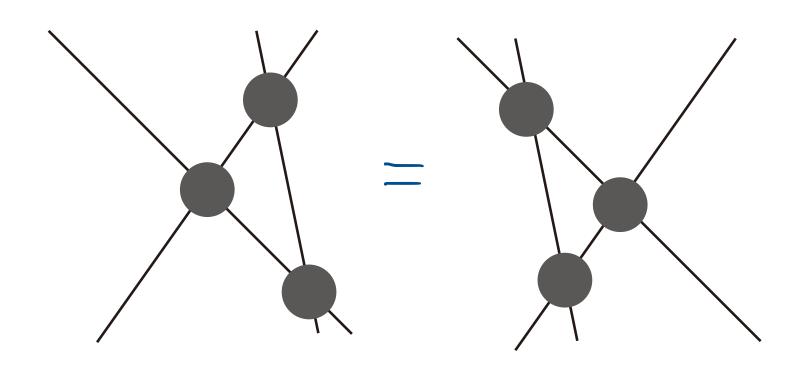
Part IV to appear

quantum

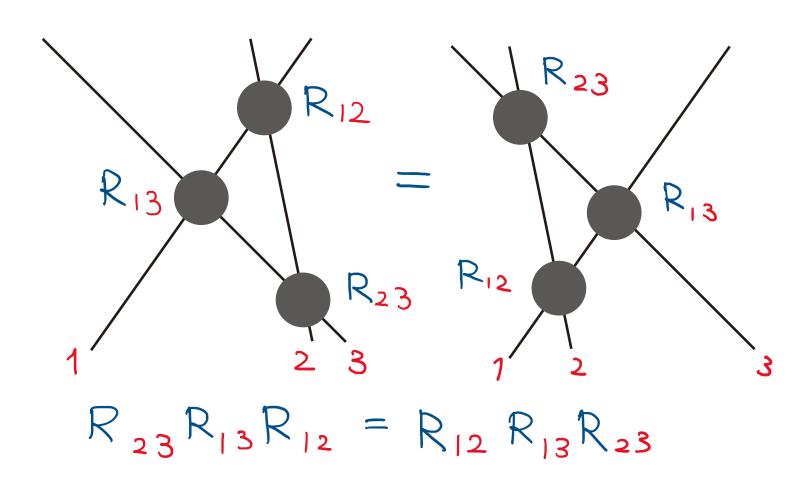
integrable
field theories

Integrable Lattice Models (Part I and II)

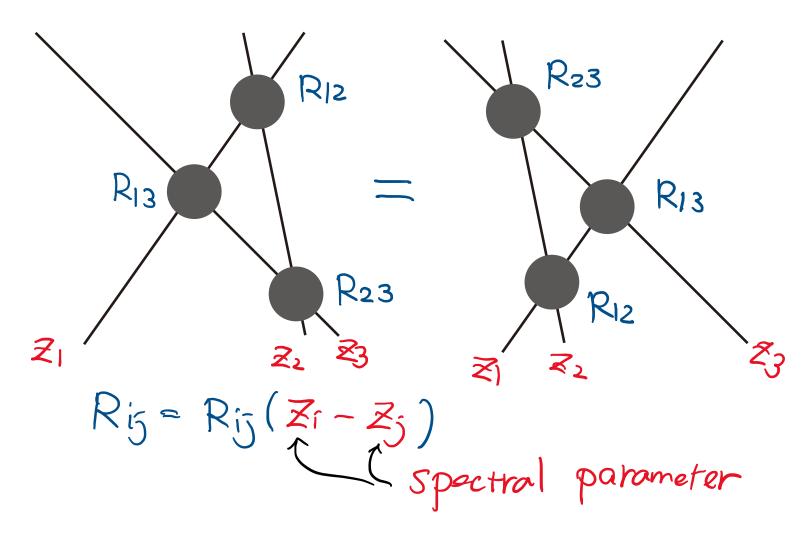
Integrability in lattice models: characterized by Yang-Baxter equation



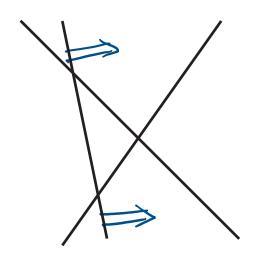
Integrability in lattice models: characterized by Yang-Baxter equation

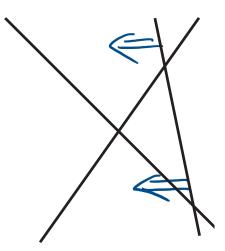


Integrability in lattice models: characterized by Yang-Baxter equation with spectral parameters

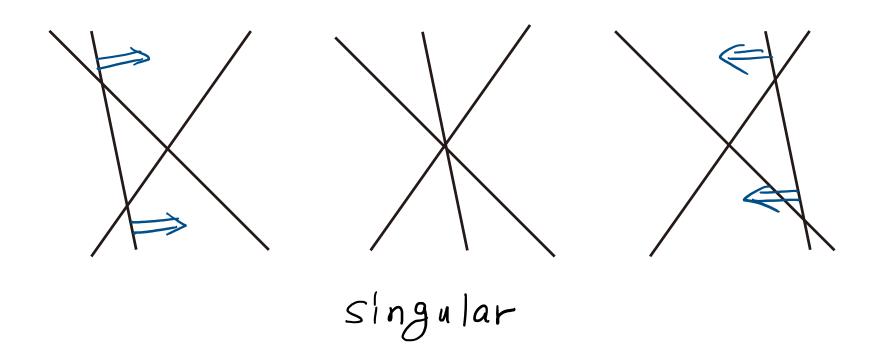


integrability as topological invariance?

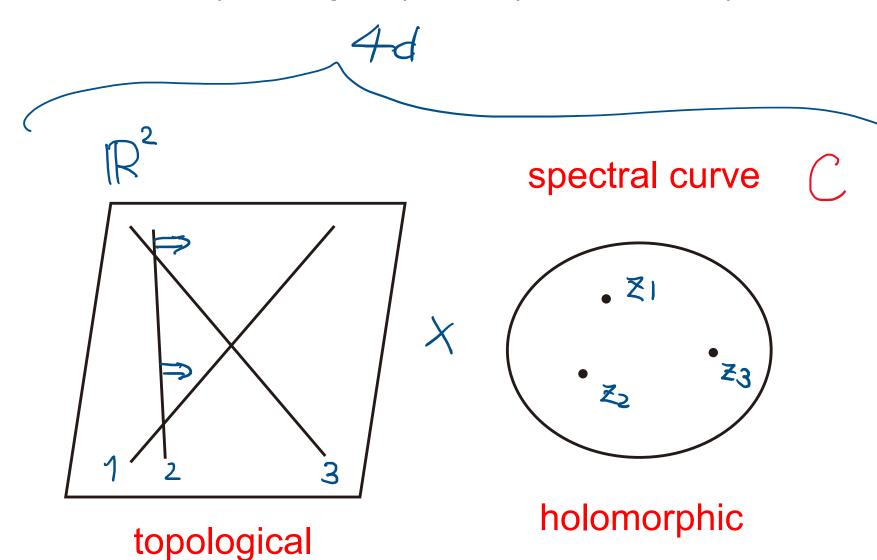




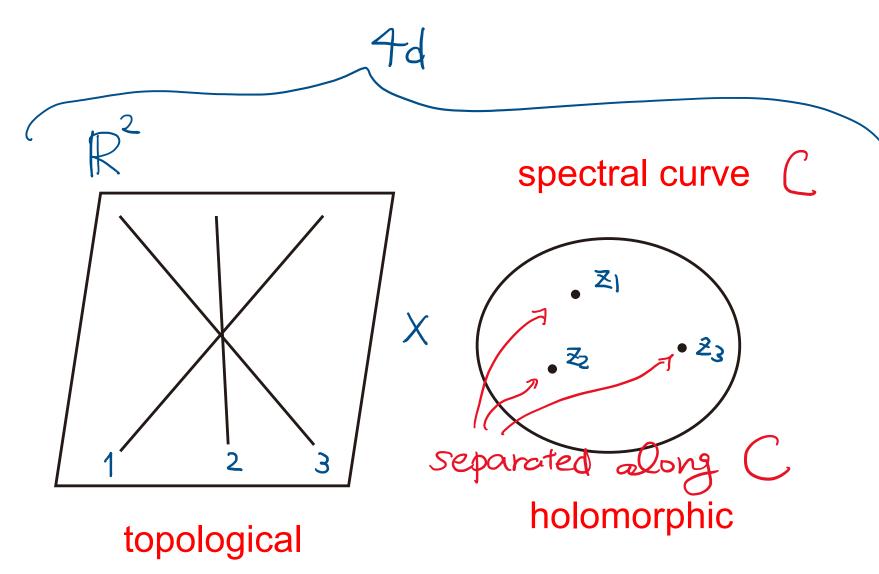
integrability as topological invariance?



4d = 2d (topological) + 2d (holomorphic)



4d = 2d (topological) + 2d (holomorphic)



$$\mathcal{L} = \frac{1}{K} \int_{\mathbb{R}^2 \times C} d\mathbf{z} \wedge \operatorname{Tr}(\mathbf{A} \wedge d\mathbf{A} + \frac{2}{3} \mathbf{A} \wedge \mathbf{A} \wedge \mathbf{A})$$

$$\{t, x\} \{z, \hat{z}\}$$

$$\mathcal{L} = \frac{1}{K} \int_{\mathbb{R}^2 \times C} dz \wedge Tr(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$$

$$\{t, x\} \{z, z\}$$

$$A = A_t dt + A_x dx + A_{\overline{z}} d\overline{z} + A_{\overline{z}} d\overline{z}$$

depends on all $t, X, \overline{z}, \overline{z}$

$$\mathcal{L} = \frac{1}{K} \int_{\mathbb{R}^2 \times C} dZ \wedge Tr(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$$

$$\{t, x\} \{z, z\}$$

$$A = A_t dt + A_x dx + A_{\overline{z}} d\overline{z} + A_{\overline{z}} d\overline{z}$$
depends on all $t, X, \overline{z}, \overline{z}$

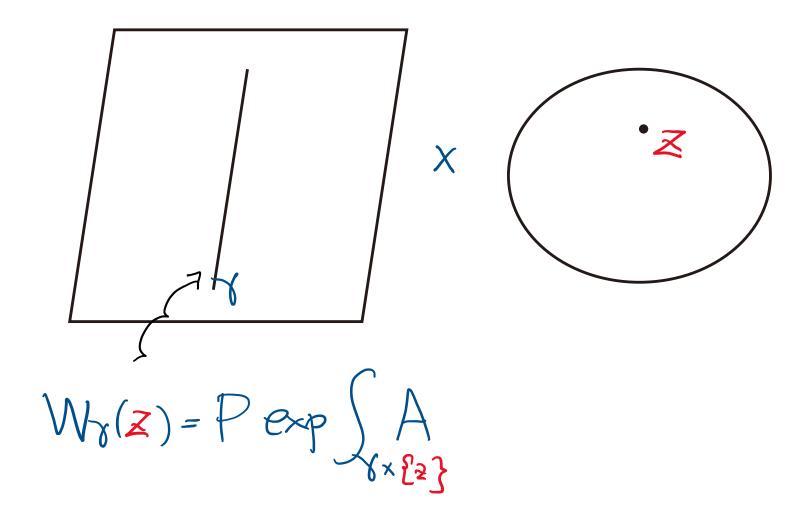
"T-dual" to ordinary 3d Chern-Simons [Vafa-Y] (to appear)

$$\mathcal{L} = \frac{1}{K} \int_{\mathbb{R}^2 \times C} dZ \wedge Tr(A \wedge dA + \frac{2}{3} A \wedge A \wedge A)$$

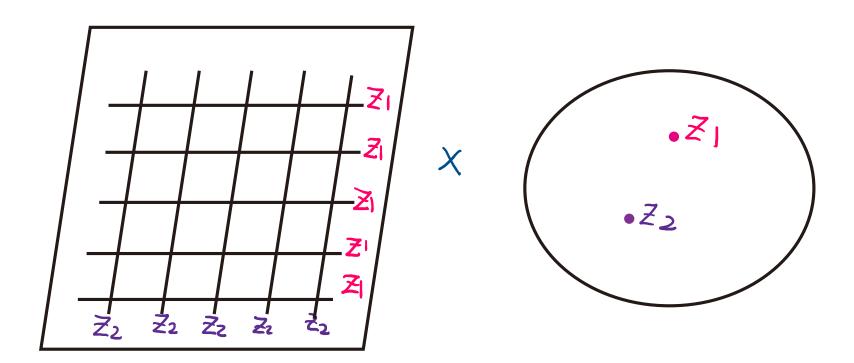
$$\{t,x\} \{z,z\}$$

Perturbative expansion in around isolated classical solution (for standard, i.e. "non-dynamical" YBE)

statistical lattice from Wilson lines



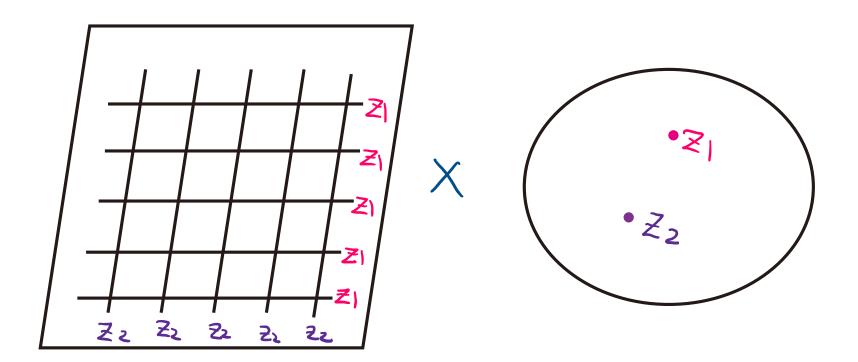
statistical lattice from Wilson lines



Integrable Field Theories

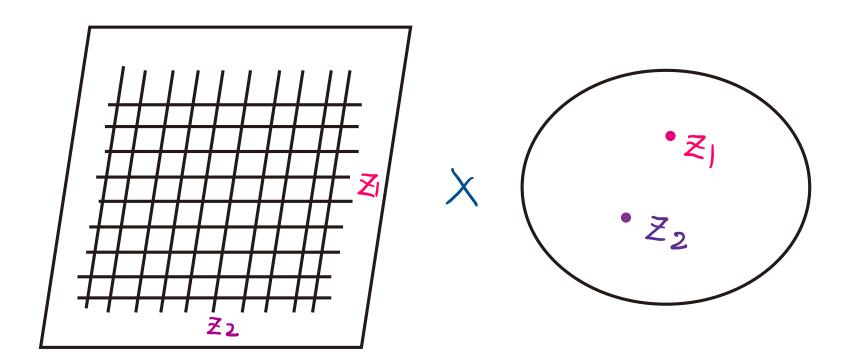
(Part III and IV)

thermodynamic limit



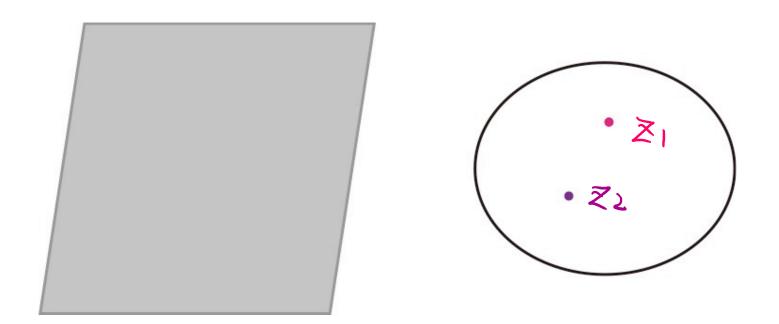
lattice model from Wilson lines

thermodynamic limit



lattice model from Wilson lines

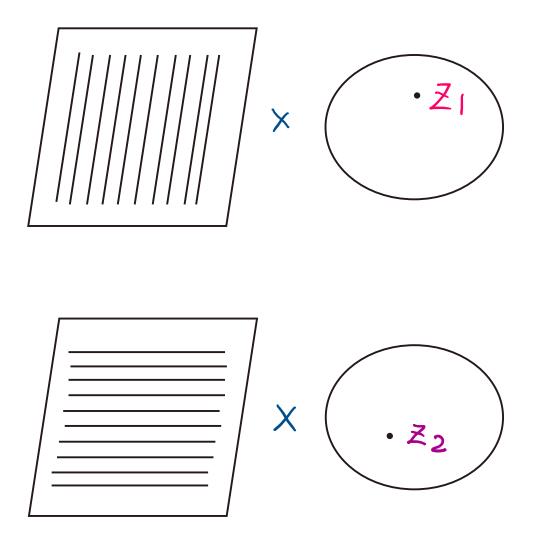
thermodynamic limit



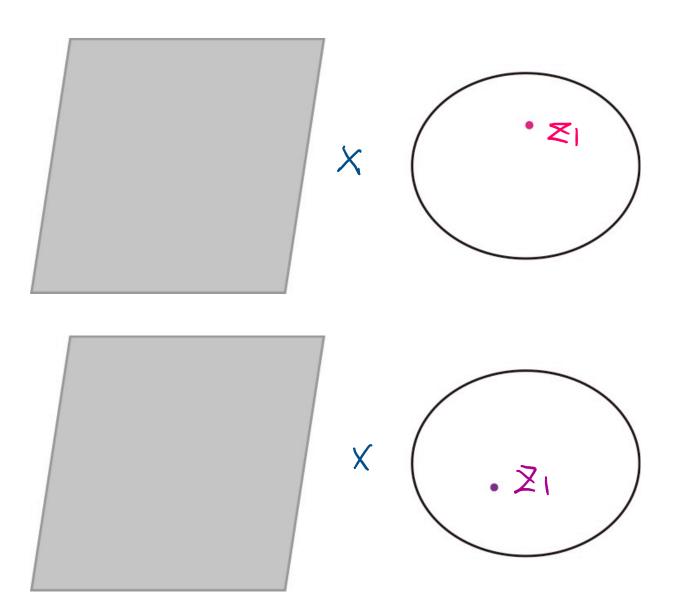
2d field theory from surface defects @ Z = Z 1 & Z = Z 2

coupled 4d-2d system

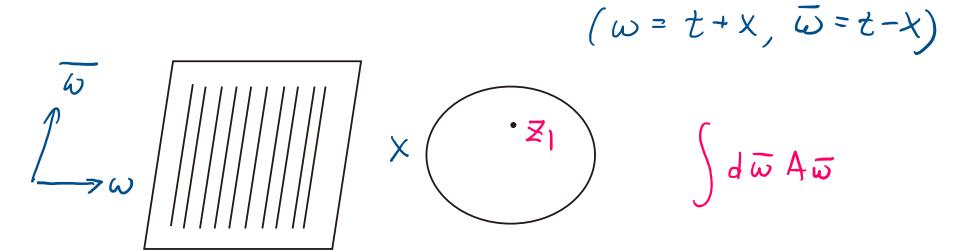
two defects: vertical and horizontal



two defects: vertical and horizontal

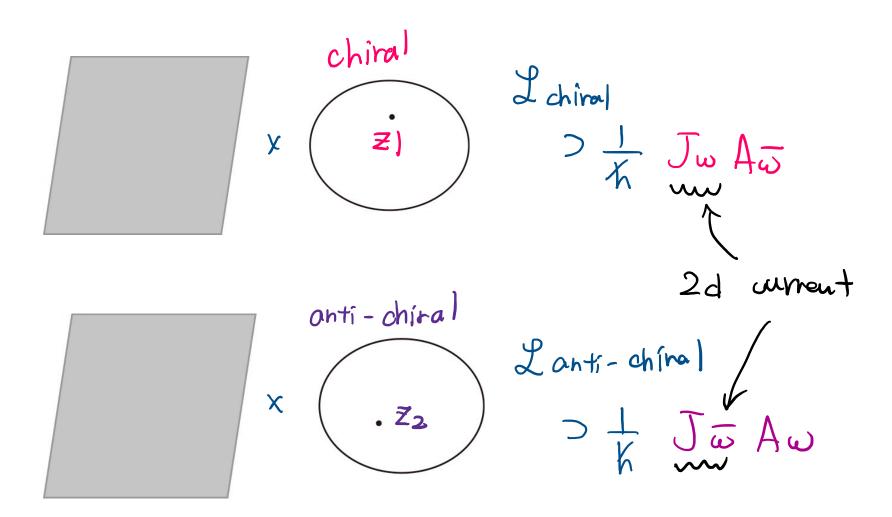


two defects: chiral and anti-chiral





two defects: chiral and anti-chiral



Why Integrable?

(Part III)

Lax operator
$$(1-form \ on \ \mathbb{R}^2)$$

 $\mathcal{L}(z) = A_{\omega}(z) d\omega + A_{\overline{\omega}}(z) d\omega$

Lax operator
$$(1-\text{form on } \mathbb{R}^2)$$

 $\mathcal{L}(z) = A_{\omega}(z) d\omega + A_{\overline{\omega}}(z) d\omega$

Flat connection

$$\mathcal{L}(z) = A_{\omega}(z) d\omega + A_{\overline{\omega}}(z) d\omega$$

Flat connection

infinitely-many conserved charges

$$W(z) = Tr P \exp \left(\int_{r}^{z} \frac{Q_{n}}{z^{n}} \right)$$

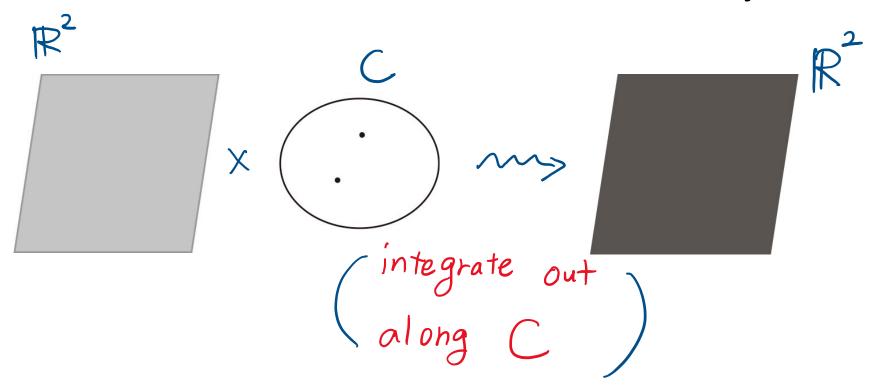
$$V = Tr P exp A$$

Lax operator = 4d Wilson line!

Effective 2d Theory (Part III)

4d-2d system

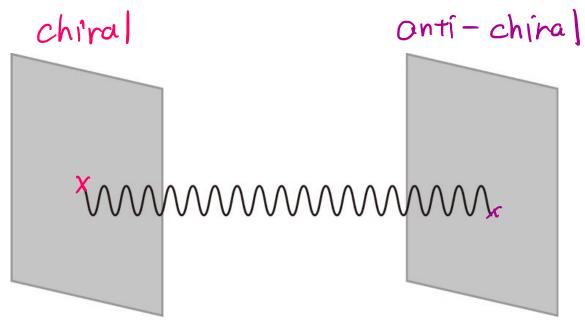
effective 2d system



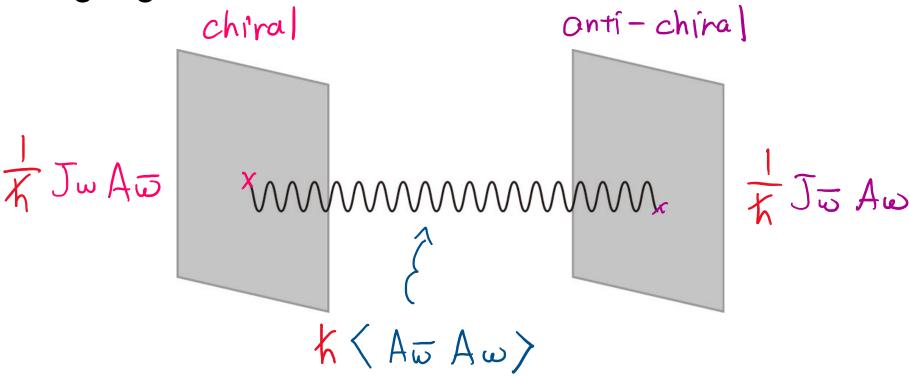
No 4d zero modes: we have perturbative expansion around an isolated solution of equation of motion (e,g,A=0)

All zero modes comes from 2d surface defects

The interaction comes from exchange of 4d gauge bosons



The interaction comes from exchange of 4d gauge bosons



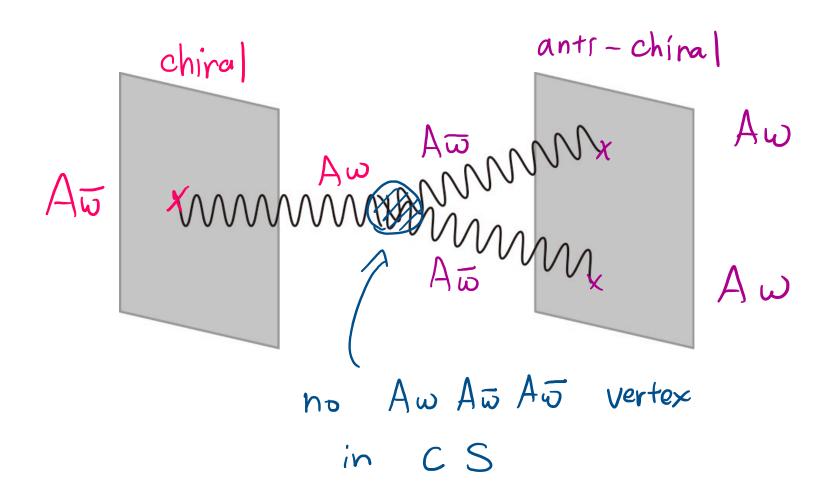
The interaction comes from exchange of 4d gauge bosons

chiral anti-chiral

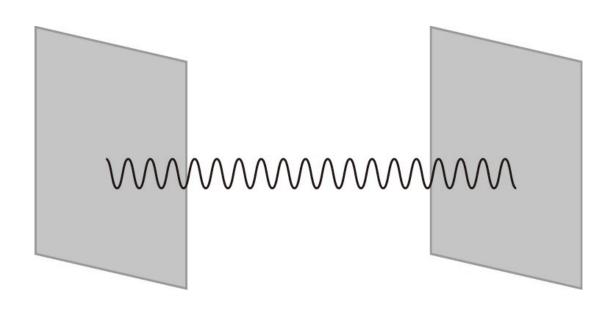
$$\frac{1}{K} J_{\omega} A_{\overline{\omega}}$$
 $\frac{1}{K} J_{\overline{\omega}} A_{\omega}$
 $\frac{1}{K} J_{\overline{\omega}} A_{\omega}$
 $\frac{1}{K} J_{\overline{\omega}} A_{\omega}$
 $\frac{1}{K} J_{\overline{\omega}} A_{\omega}$
 $\frac{1}{K} J_{\overline{\omega}} A_{\omega}$

only this diagram on the left contributes at tree-level $namely O(\frac{1}{k})$

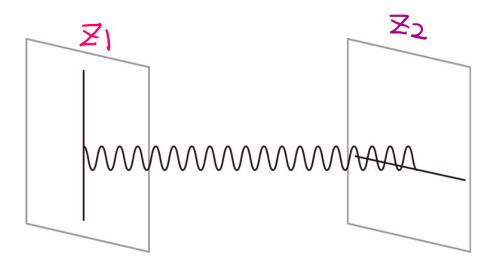
For example, no such diagram:



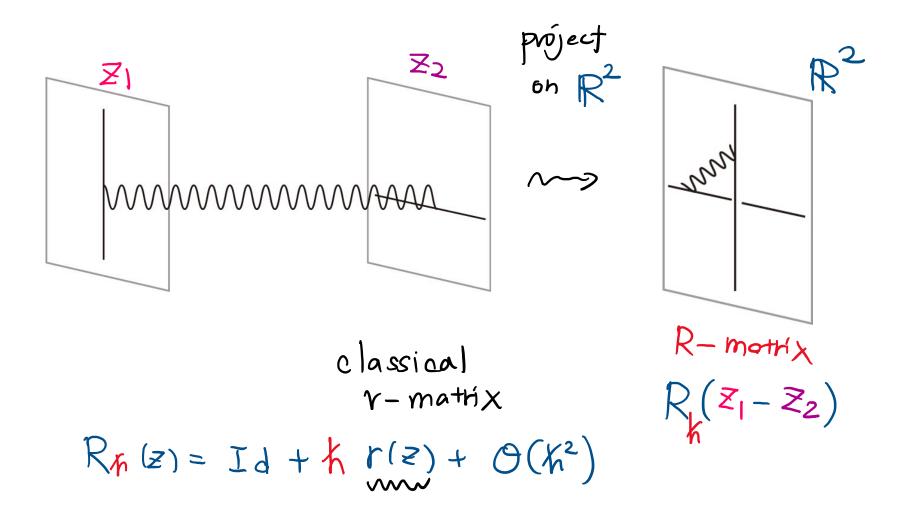
Let's now compute this diagram



The computation is the same as in the computation of leading-order term of R-matrix in Part I



The computation is the same as in the computation of leading-order term of R-matrix in Part I



We thus have the classical r-matrix

$$R_{k}(z) = Id + k r (z) + O(k^{2})$$
www

We obtained the effective 2d theory:

Led eff = Led chiral (
$$Z_1$$
) + Led onto-chiral (Z_2)
+ $V^{ab}(Z_1 - Z_2) J_w(Z_1) J_w^b(Z_2)$

ZI

Aw Aw

Jw

Similarly, we can compute Lax matrix for the effective 2d theory:

$$\mathcal{L}(z) = A\omega(z) d\omega + A\overline{\omega}(z) d\overline{\omega}$$

$$\mathcal{L}(z) = \operatorname{rab}(z - z) J\overline{\omega}(z) + \operatorname{rab}(z - z) J\overline{\omega}(z_2)$$

$$J_{\omega}A_{\omega}$$
 $J_{\omega}A_{\omega}$

from $J_{(z)}$

For the rational case, we have

$$r_{ab}(z) = \frac{Cab}{Z}$$
 Cosimir element

and we reproduce the standard formula

$$\mathcal{L}(z) = \frac{j + z + j}{z^2 - j}$$

where
$$j = J\omega(z_1)d\omega + J\overline{\omega}(z_2)d\omega$$

and we choose
$$Z_1 = 1$$
, $Z_2 = -1$

Examples and Generalizations

Simple example: chiral/anti-chiral free fermions

Reproduce Gross-Neveu and Thirring models

$$G = SO(N) \qquad G = SU(N)$$

The framework generalize in several directions:

1. trigonometric/elliptic cases

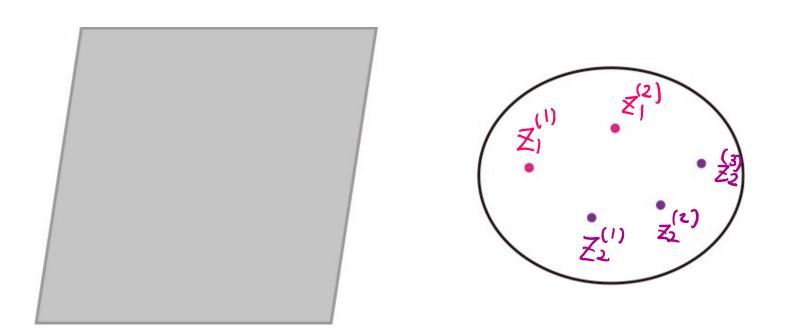
2. More general defects

e.g. curved beta-gamma system

from which we obtain sigma models

Also non-chiral defects, e.g. free boson

3. multiple defects



$$\mathcal{L} \supset \sum_{i,j} \operatorname{rab}(\mathbf{Z}_{1}^{(i)} - \mathbf{Z}_{2}^{(j)}) J_{\omega}^{a}(\mathbf{Z}_{1}^{(i)}) J_{\omega}^{b}(\mathbf{Z}_{2}^{(j)})$$

Quantum Integrability

(Part IV)

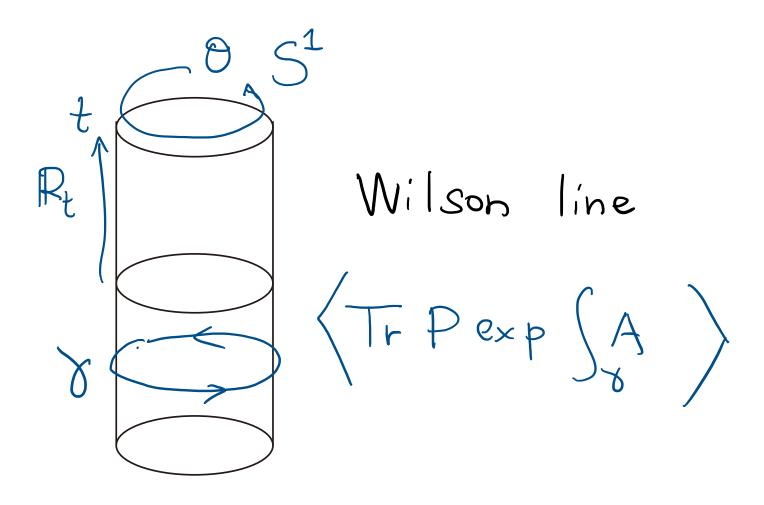
Classical integrability from Lax operator is in general broken by quantum effects

Classical integrability from Lax operator is in general broken by quantum effects

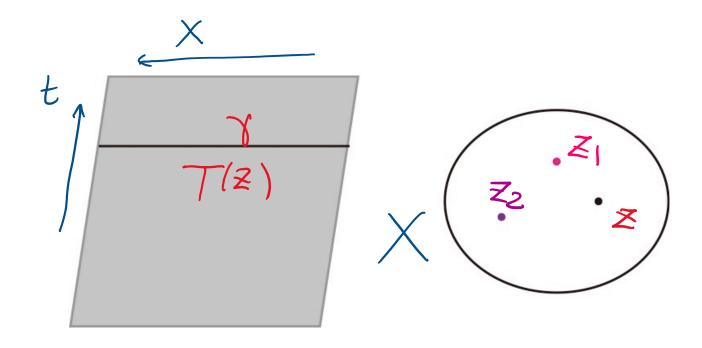
For consistency we need anomaly cancellation for the full 4d-2d system; this can be achieved by modifying the CS level appropriately. Today I will not discuss this.

Instead let me explain how to see quantum integrability in our framework, assuming cancellation of anomalies

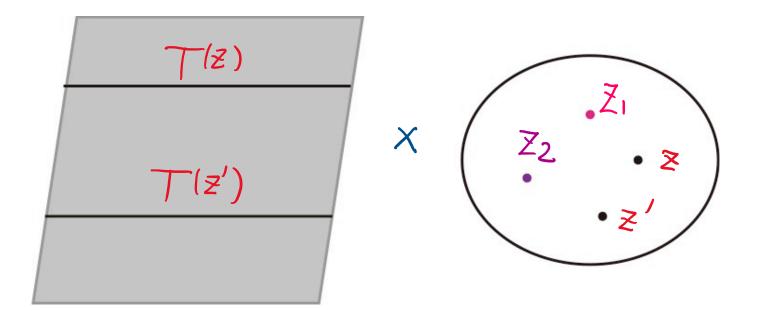
Recall: Lax operator = 4d Wilson line

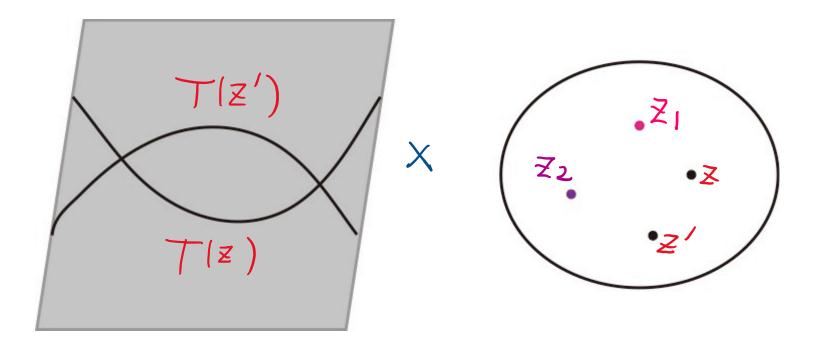


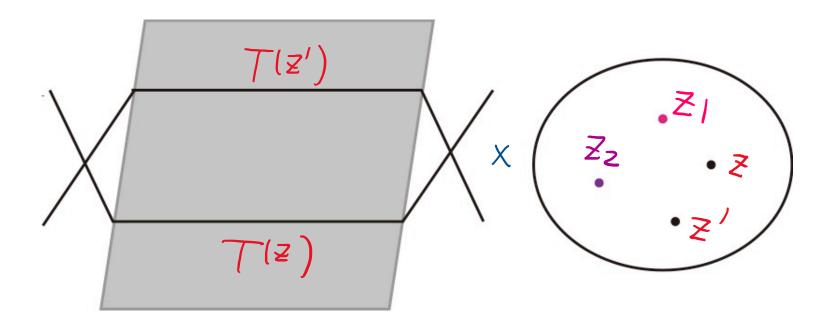
instead of RxS1 let's consider R²

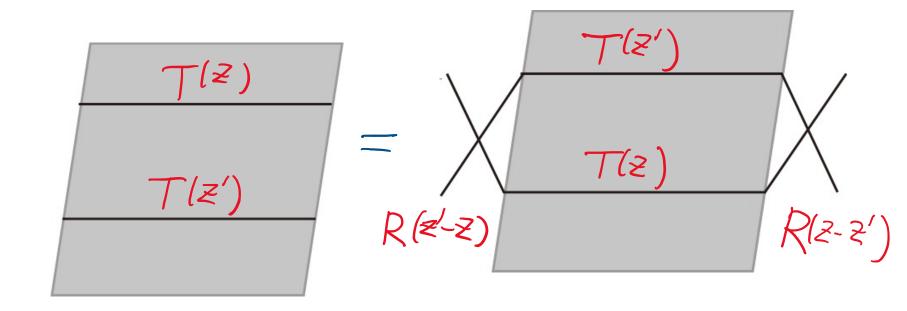


instead of $\mathbb{R} \times S^1$ let's consider \mathbb{R}^2

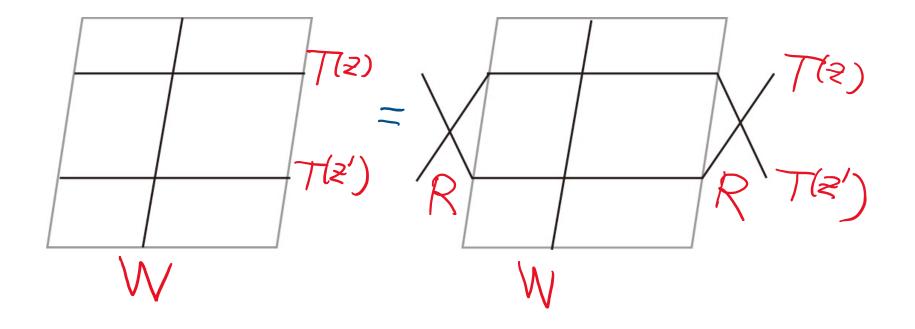








RTT relation: definition of the Yangian (and their trigonometric/elliptic counterparts), and ensures quantum integrability

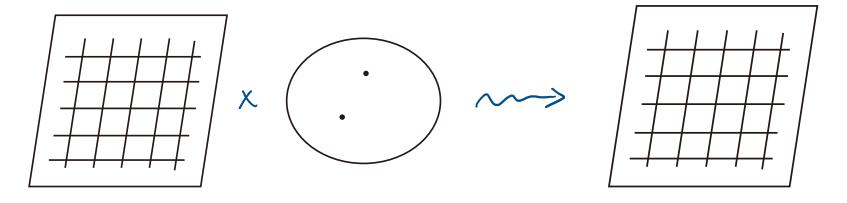


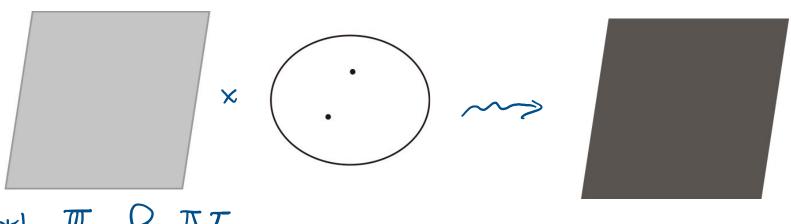
This can be thought of the "continuum limit" of the RTT relation for discrete lattice models, discussed in Part II Our 4d framework says more, about e.g.

- Local conserved charges
- Renormalization group flow
- S-matrix factorization
- Higher genus spectral curves) Part II

Summary

Part I & II





Part I & IV