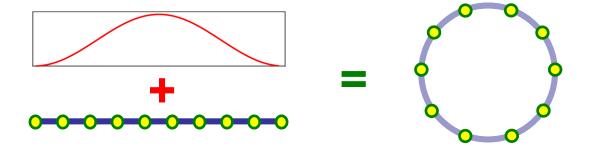


Sine-square deformations of one-dimensional critical systems

Hosho Katsura (Dept. Phys., UTokyo)



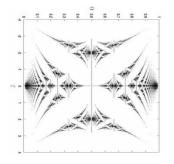
- H.K., J. Phys. A: Math. Theor. 44, 252001; 45, 115003 (2011).
- ▶ I. Maruyama, H.K., & T. Hikihara, Phys. Rev. B 84, 165132 (2011).
- S. Tamura and H. Katsura, Prog. Theor. Exp. Phys, 113A01 (2017).

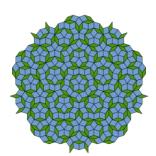
1. Introduction

- What is SSD (sine-square deformation)?
- What is special about SSD?

- 2. Ground state of solvable models with SSD
- 3. Excited states of solvable models with SSD
- 4. Summary

- Disorder and inhomogeneity in cond-mat
 - Hofstadter butterfly, Wannier-Stark
 - Quasi-periodic systems
 - Impurity and boundary





The presence of inhomogeneity and/or boundary usually breaks solvability/integrability...

Main difficulty: Single-particle problem is already nontrivial. What happens when the interaction is switched on?

■ Today's talk

- A new class of inhomogeneous but solvable models
 Accidentally found by numerics. Hidden CFT structure.
- Abandon "from few to many" approach!
 Solve many-body problem without using single-particle solutions.

What is SSD (sine-square deformation)?

Chat with Tolya Kirrilov and Nishino Workshop "From DMRG to TNF" @YITP (Oct. 2010)

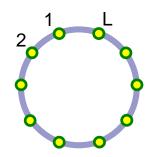
N: "Hikihara-san found some interesting system."

K&K: "Is that solvable or integrable?"

■ Two `conventional' boundary conditions

Periodic chain

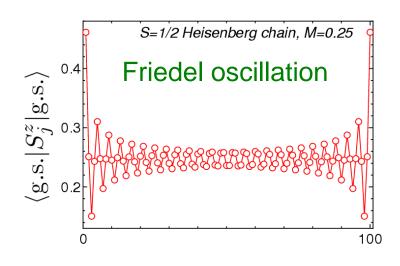
$$\mathcal{H}_0 = \sum_{j=1}^L oldsymbol{S}_j \cdot oldsymbol{S}_{j+1}$$



Open chain

$$\mathcal{H}_{ ext{open}} = \sum_{j=1}^{L-1} oldsymbol{S}_j \cdot oldsymbol{S}_{j+1}$$

Any observable is translation invariant



Smooth boundary condition

$$\mathcal{H}_f = \sum_{j=1}^{L-1} \underbrace{f_{j+1/2}}_{} oldsymbol{S}_j \cdot oldsymbol{S}_{j+1}$$

Vekic & White, *PRL* **71** (1993); *PRB* **53** (1996).

 f_x

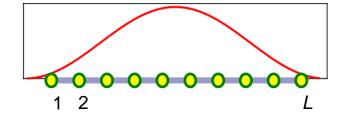
Energy scale of local Hamiltonian at *x* is modified by *fx*. This b.c. reduces the boundary effect (to some extent).

- Sine-square deformation
 - = Smooth b.c. with a specific fx.

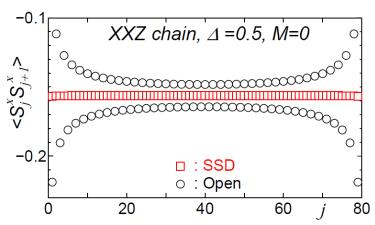
A. Gendiar *et al.*, *PTP* **122**; **123** (2009-2010)

Ex.) Heisenberg chain with SSD Hikihara & Nishino, *PRB* **83** (2011)

$$\mathcal{H}_{\mathrm{SSD}} = \sum_{j=1}^{L-1} \sin^2(\pi j/L) \boldsymbol{S}_j \cdot \boldsymbol{S}_{j+1}$$



No boundary effect in g.s.!



What is special about SSD?

- Suppression of boundary effects
 - Negligible Friedel oscillation, uniform g.s. correlations
 - Observed in 1D critical systems
 XXZ, Hubbard, Kondo-lattice (Shibata-Hotta, PRB (2011)), ...
- Scaling of entanglement entropy

$$S^{\text{PBC}}(\ell, L) = \frac{c}{3} \ln \left[\frac{L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right] + s_1$$
$$S^{\text{OBC}}(\ell, L) = \frac{c}{6} \ln \left[\frac{2L}{\pi} \sin \left(\frac{\pi \ell}{L} \right) \right] + \frac{s_1}{2} + \ln(g)$$

$$\mathcal{S}^{\mathrm{SSD}} \simeq \mathcal{S}^{\mathrm{PBC}}$$

■ Wavefunction overlap
Overlap between the g.s. of systems
with PBC and SSD is almost 1.

$$\langle \Psi_{\rm SSD} | \Psi_{\rm PBC} \rangle \simeq 1$$

"Conjecture" G.S. of $\mathcal{H}_{\mathrm{PBC}}$

Main results

☑ XY chain, Ising chain

☑ Massless Dirac, CFTs, ...

Outline

1. Introduction

2. Ground state of solvable models with SSD

- Definitions
- Free fermion chain with SSD
- Other examples (spin chains, Dirac fermions, CFT, ...)
- 3. Excited states of solvable models with SSD
- 4. Summary

Uniform and chiral Hamiltonians Consider a lattice model on a chain of length L, or a continuous field theory on a ring of length ℓ . (PBC imposed)

	Lattice model	Field theory
Uniform	$\mathcal{H}_0 = \sum_{j=1}^{L} h_j + \sum_{j=1}^{L} h_{j,j+1}$ $\delta = \frac{2}{\delta}$	$\mathcal{H}_0 = \int_0^\ell h(x) dx$ $\delta = \frac{2\pi}{\ell}$
Chiral	$\mathcal{H}_{\pm} = \sum_{j=1}^{L} e^{\pm i\delta(j-1/2)} h_j + \sum_{j=1}^{L} e^{\pm i\delta j} h_{j,j+1}$	$\mathcal{H}_{\pm} = \int_{0}^{\ell} e^{\pm i\delta x} h(x) dx$

■ Sine-square deformed (SSD) Hamiltonian

$$\mathcal{H}_{\text{SSD}} = \frac{1}{2}\mathcal{H}_0 - \frac{1}{4}(\mathcal{H}_+ + \mathcal{H}_-)$$

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2}$$
Sites 1 and L do not couple!

$$\sin^2\frac{\theta}{2} = \frac{1 - \cos\theta}{2}$$

$$\mathcal{H}_{\mathrm{SSD}} = \frac{1}{2} \sum_{j=1}^{L} \left(1 - \frac{1}{2} e^{i\delta j} - \frac{1}{2} e^{-i\delta j} \right) \mathbf{S}_{j} \cdot \mathbf{S}_{j+1} = \sum_{j=1}^{L} \sin^{2} \left(\frac{\pi}{L} j \right) \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

 $\epsilon(k) = -2t\cos k - \mu$

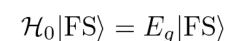
Free fermion chain with SSD (1)

Uniform and chiral Hamiltonians

$$\mathcal{H}_0 = -t \sum_{j=1}^{L} (c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j) - \mu \sum_{j=1}^{L} c_j^{\dagger} c_j$$

 c_j/c_i^{\dagger} : annihilation/creation of fermion at j.

Fourier.tr.
$$\mathcal{H}_0 = \sum_k \epsilon(k) c_k^\dagger c_k$$



Ground state of \mathcal{H}_0 : Fermi sea ($\epsilon(k) < 0$ occupied)

Chiral Hamiltonian ($\delta = \frac{2\pi}{r}$)

Momentum rep.
$$\mathcal{H}_{\pm} = e^{\mp i\delta/2} \sum_{k} \epsilon(k \mp \delta/2) c_k^{\dagger} c_{k \mp \delta} \qquad \cdots \qquad \bigcirc \qquad \mathcal{H}_{\pm} |\psi\rangle = 0$$

$$k - \delta \qquad k \qquad k + \delta$$

If
$$\epsilon(k_{
m F}+\delta/2)=\epsilon(-k_{
m F}-\delta/2)=0$$
, then $\mathcal{H}_{\pm}|{
m FS}\rangle=0$. ("." $(c_k^{\dagger})^2=0$)

■ SSD Hamiltonian

$$\mathcal{H}_{SSD} = -t \sum_{j=1}^{L-1} \sin^2 \left(\frac{\pi}{L} j \right) \left(c_j^{\dagger} c_{j+1} + c_{j+1}^{\dagger} c_j \right) - \mu \sum_{j=1}^{L-1} \sin^2 \left[\frac{\pi}{L} \left(j - \frac{1}{2} \right) \right] c_j^{\dagger} c_j$$

In terms of
$$\mathcal{H}_0 \& \mathcal{H}_{\pm}$$
, $\mathcal{H}_{SSD} = \frac{1}{2}\mathcal{H}_0 - \frac{1}{4}(\mathcal{H}_+ + \mathcal{H}_-)$

Fermi sea is annihilated by chiral Hamiltonians!

$$\mathcal{H}_{\pm}|\mathrm{FS}\rangle=0$$

$$\mathcal{H}_{SSD}|FS\rangle = \left[\frac{1}{2}\mathcal{H}_0 - \frac{1}{4}(\mathcal{H}_+ + \mathcal{H}_-)\right]|FS\rangle = \frac{E_g}{2}|FS\rangle$$

Fermi sea is an exact eigenstate of $\mathcal{H}_{\mathrm{SSD}}$!

■ Uniqueness of the ground state

Fermi sea is *the unique* g.s. of \mathcal{H}_{SSD} . $\mathcal{H}_0 \& \mathcal{H}_{SSD}$ share the same g.s.

Proof. Free-fermion chain → XY spin chain (via Jordan-Wigner tr.)

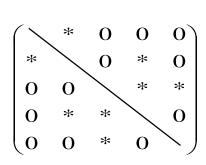
Perron-Frobenius theorem tells: (i) the ground state of \mathcal{H}_{SSD} is unique. (ii) it has nonvanishing overlap with $|FS\rangle$, the ground state of \mathcal{H}_0 .

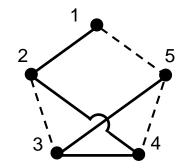
Theorem (Perron-Frobenius).

Let M be an $N \times N$ real symmetric matrix with the properties

- (i) $m_{i,j} \le 0$ for any $i \ne j$,
- (ii) all $i \neq j$ are connected via nonzero matrix elements of M. Then the lowest eigenvalue of M is nondegenerate and the corresponding eigenvector $\mathbf{v} = (v_1, ..., v_N)$ can be taken to satisfy $v_i > 0$ for all i.

 $\mathcal{H}_{\mathrm{SSD}}$ satisfy both (i) and (ii) \rightarrow g.s. is unique





 $|\mathrm{FS}\rangle$ (in spin reps.) which is an eignstate of $\mathcal{H}_{\mathrm{SSD}}$ can also be taken to satisfy $v_i>0$ for all i. This state cannot be orthogonal to the SSD g.s.

 \rightarrow $|\mathrm{FS}\rangle$ is the unique ground state of $\mathcal{H}_{\mathrm{SSD}}$.

Real-space picture

■ Determinant identity

1-particle eigenstates of \mathcal{H}_0 : $\phi_k(j) = e^{\mathbf{i}kj}$ (plane waves)

1-particle eigenstates of \mathcal{H}_{SSD} : $\psi_k(j) = ?$

When the states are occupied up to the Fermi level $E_{\rm F}$.

$$\det[\psi_k(j)]_{k,j=1,...,N} = \det[\phi_k(j)]_{k,j=1,...,N}$$

Solved many-body problem without using 1-particle solutions!

■ Curious identity

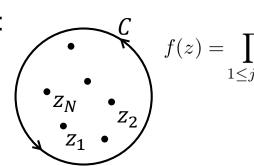
First quantization picture: Fermi sea = Vandermonde det.

$$\Delta(z_1, ..., z_N) = \prod_{1 \le i \le j \le N} (z_i - z_j) \qquad z_j = \exp\left(i\frac{2\pi}{L}x_j\right)$$

 $\mathcal{H}_{\pm}|\mathrm{FS}\rangle = 0$ implies the following identity:

$$\sum_{j=1}^{N} z_j \prod_{k(\neq j)} \frac{z_j - tz_k}{z_j - z_k} = \sum_{j=1}^{N} z_j$$

for any set of $\{z_1, ..., z_N\}$ and t.



Anisotropic XY chain

■ Uniform Hamiltonian

$$\mathcal{H}_0 = -J\sum_{j=1}^L[(1+\gamma)S_j^xS_{j+1}^x + (1-\gamma)S_j^yS_{j+1}^y] - h\sum_{j=1}^LS_j^z,$$
 Jordan-Wigner,
$$\mathcal{H}_0 = \sum_{k\in\mathcal{K}}\epsilon_0(k)\left(d_k^\dagger d_k - \frac{1}{2}\right)$$
 Fourier, Bogoliubov. tr.

Phase diagram 12/27 i) isotropic

Ground state of \mathcal{H}_0 : $d_k|0\rangle = 0$ for all k.

■ Chiral and SSD Hamiltonians

Chiral Hamiltonian ($\delta = \frac{2\pi}{T}$) in momentum space

$$\mathcal{H}_{\pm} = \frac{1}{2} e^{\mp i\delta/2} \sum_{k \in \mathcal{K}} \left[\epsilon_{\pm}(k) d_k^{\dagger} d_{k\mp\delta} - i \eta_{\pm}(k) d_k^{\dagger} d_{-k\pm\delta}^{\dagger} + i \eta_{\pm}(k) d_{-k} d_{k\mp\delta} - \epsilon_{\pm}(k) d_{-k} d_{k\mp\delta}^{\dagger}, \right]$$

 $\eta_{\pm}(k)=0$ for all k when i) $\gamma=0$, ii) $\gamma=1,\ h/J=1$, in which case $\mathcal{H}_{\pm}|0\rangle=0$

$$\mathcal{H}_{\pm}|0\rangle = 0$$

$$\mathcal{H}_{SSD}|0\rangle = \left[\frac{1}{2}\mathcal{H}_0 - \frac{1}{4}(\mathcal{H}_+ + \mathcal{H}_-)\right]|0\rangle = \frac{E_g}{2}|0\rangle$$

 $|0\rangle$ is **the unique** ground state of $\mathcal{H}_{\mathrm{SSD}}$ (Perron-Frobenius theorem).

■ Uniform Hamiltonian

$$\mathbf{Z}_3$$
 Pauli operators $\tau = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

Z₃ Pauli operators
$$\tau = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}, \quad \sigma = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$H_0 = -f \sum_{j=1}^L (\tau_j + \tau_j^{\dagger}) - J \sum_{j=1}^L (\sigma_j^{\dagger} \sigma_{j+1} + \sigma_j \sigma_{j+1}^{\dagger}) \qquad \begin{array}{c} \mathsf{PBC:} \\ \sigma_{L+1} = \sigma_1 \end{array}$$

The model is critical (c=4/5), self-dual, and integrable when f=J. However, it is not reducible to free fermions. (parafermions?)

■ SSD Hamiltonian

$$H_{\text{SSD}} = -f \sum_{j=1}^{L} \sin^2 \left(\frac{\pi(j-1/2)}{L} \right) (\tau_j + \tau_j^{\dagger}) - J \sum_{j=1}^{L-1} \sin^2 \left(\frac{\pi j}{L} \right) (\sigma_j^{\dagger} \sigma_{j+1} + \sigma_j \sigma_{j+1}^{\dagger})$$

■ Numerical result

At the critical point (f=J), the overlap between the g.s. of uniform and SSD Hamiltonians is remarkably close to 1!

$$1-\langle\psi_{\rm SSD}|\psi_{\rm PBC}\rangle\sim10^{-5}$$
 Numerical diagonalization by *Mathematica* up to 16 sites (3¹⁶= 43,046,721).

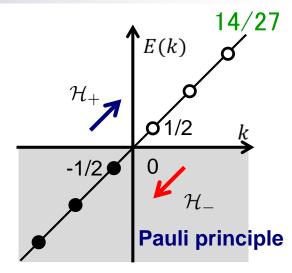
Massless Dirac fermions

■ Uniform Hamiltonian

Ring of length ℓ . APBC: $\psi_R(x+\ell) = -\psi_R(x)$

$$\mathcal{H}_0 = -i\frac{v_F}{2\pi} \int_0^\ell dx : \psi_R^{\dagger}(x) \frac{d}{dx} \psi_R(x) :$$

Fourier.tr.
$$\mathcal{H}_0 = \frac{2\pi}{\ell} v_{\mathrm{F}} \sum_{n} n : \psi_{R,n}^\dagger \psi_{R,n} :$$



Ground state of \mathcal{H}_0 : Dira sea (*E*<0 occupied) $\mathcal{H}_0|\mathrm{DS}\rangle=0$

Chiral and SSD Hamiltonians

$$(\mathcal{H}_{\pm})^{\dagger}=\mathcal{H}_{\mp}$$

$$\mathcal{H}_{\pm} = -i \frac{v_{\rm F}}{2\pi} \int_0^{\ell} dx \, e^{\pm i \delta x} : \psi_R^{\dagger}(x) \frac{d}{dx} \psi_R(x) : \pm \frac{\pi v_{\rm F}}{2\ell} \frac{1}{2\pi} \int_0^{\ell} dx \, e^{\pm i \delta x} : \psi_R^{\dagger}(x) \psi_R(x) :$$

$$\mathcal{H}_{\pm} = \frac{2\pi}{\ell} v_{\mathrm{F}} \sum_{n \in \mathbb{Z} + \frac{1}{2}} \left(n \pm \frac{1}{2} \right) \psi_{R,n\pm 1}^{\dagger} \psi_{R,n} \qquad \boxed{\mathcal{H}_{\pm} |0\rangle = 0}$$

Dirac sea $|DS\rangle$ is **a** ground state of \mathcal{H}_{SSD} .

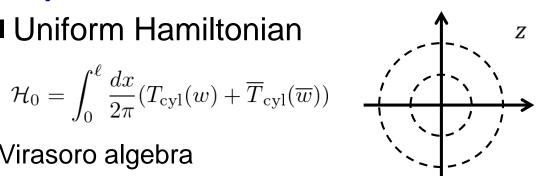
Proof. \mathcal{H}_{SSD} is positive semi-definite ($\langle \Psi | \mathcal{H}_{SSD} | \Psi \rangle \geq 0$ for any state),

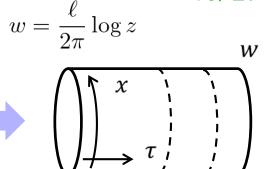
which follows from
$$\mathcal{H}_{\mathrm{SSD}} = \sum_{n \in \mathbb{Z} + \frac{1}{2}, n > 0} (\alpha_{R,n}^{\dagger} \alpha_{R,n} + \beta_{R,n} \beta_{R,n}^{\dagger}) \qquad \begin{array}{l} \alpha_{R,n} = \psi_{R,n} - \psi_{R,n+1} \\ \beta_{R,n} = \psi_{R,-n} - \psi_{R,-n-1} \end{array}$$

(1+1) d Conformal field theories

■ Uniform Hamiltonian

$$\mathcal{H}_0 = \int_0^\ell \frac{dx}{2\pi} (T_{\text{cyl}}(w) + \overline{T}_{\text{cyl}}(\overline{w}))$$





Virasoro algebra

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$$

Ground state: vacuum state, $|vac\rangle = |0\rangle \otimes |\overline{0}\rangle$ $(L_n|0\rangle = 0, n \ge -1)$

■ Chiral and SSD Hamiltonians ($\delta = \frac{2\pi}{\ell}$)

$$\mathcal{H}_{\pm} = \int_{0}^{\ell} \frac{dx}{2\pi} (e^{\pm \delta w} T_{\text{cyl}}(w) + e^{\mp \delta \overline{w}} \overline{T}_{\text{cyl}}(\overline{w}))$$

$$\mathcal{H}_{\mathrm{SSD}} = \mathcal{H}_L + \mathcal{H}_R - \frac{\pi c}{12\ell}$$

$$\mathcal{H}_L = \frac{\pi}{\ell} \left(L_0 - \frac{L_{+1} + L_{-1}}{2} \right)$$

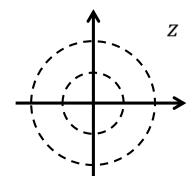
■ Vacuum state

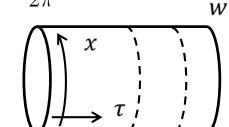
 $|0\rangle$ is *the unique normalizable E*=0 state of $\mathcal{H}_{\mathrm{SSD}}$ for unitary CFTs. ($SL(2,\mathbf{C})$ invariance: $L_0|0\rangle = L_{\pm 1}|0\rangle = 0$)

(1+1) d Conformal field theories

■ Uniform Hamiltonian

$$\mathcal{H}_0 = \frac{2\pi}{\ell} (L_0 + \overline{L}_0) - \frac{\pi c}{6\ell}$$





 $w = \frac{\ell}{2\pi} \log z$

Virasoro algebra

$$[L_m, L_n] = (m-n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m+n,0}$$

Ground state: vacuum state, $|vac\rangle = |0\rangle \otimes |\overline{0}\rangle$ $(L_n|0\rangle = 0, n \ge -1)$

■ Chiral and SSD Hamiltonians ($\delta = \frac{2\pi}{\ell}$)

$$\mathcal{H}_{\pm} = \frac{2\pi}{\ell} (L_{\pm 1} + \overline{L}_{\mp 1})$$

$$\mathcal{H}_{\mathrm{SSD}} = \mathcal{H}_L + \mathcal{H}_R - \frac{\pi c}{12\ell}$$

$$\mathcal{H}_L = \frac{\pi}{\ell} \left(L_0 - \frac{L_{+1} + L_{-1}}{2} \right)$$

■ Vacuum state

 $|0\rangle$ is the unique normalizable E=0 state of $\mathcal{H}_{\mathrm{SSD}}$ for unitary CFTs. ($SL(2,\mathbf{C})$ invariance: $L_0|0\rangle = L_{\pm 1}|0\rangle = 0$)

Uniqueness of the vacuum (1)

■ Invariant subspaces (unitary CFT, $c, h \ge 0$)

Verma module $V(c, h) \cong \text{Direct sum of } SL(2, \mathbb{R}) \text{ invariant subspaces}$

 $|\psi_s^{(n)}\rangle$: Highest-weight state of subspace s.

$$L_0|\psi_s^{(n)}\rangle = (h+n)|\psi_s^{(n)}\rangle, \quad L_1|\psi_s^{(n)}\rangle = 0, \quad \langle \psi_s^{(n)}|\psi_{s'}^{(n')}\rangle = \delta^{n,n'}\delta_{s,s'}$$

Descendants:

$$|\psi_{s,0}^{(n)}\rangle = |\psi_s^{(n)}\rangle, \quad |\psi_{s,m+1}^{(n)}\rangle = \frac{1}{\sqrt{f_{m+1}}} L_{-1} |\psi_{s,m}^{(n)}\rangle \quad (f_m = m(2h + 2n + m - 1))$$

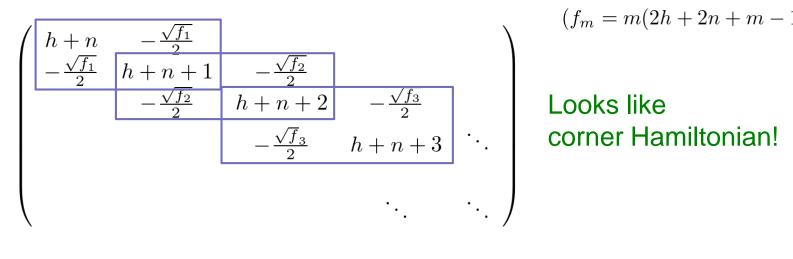
They form an orthonormal basis.

Ex.)
$$|\psi_{1,0}^{(0)}\rangle = |h\rangle$$
 $\langle \psi_{s,m}^{(n)}|\psi_{s,m'}^{(n)}\rangle = \delta_{m,m'}$ $|\psi_{1,1}^{(0)}\rangle \propto L_{-1} |\psi_{1,0}^{(0)}\rangle$ \longleftrightarrow $|\psi_{2,0}^{(0)}\rangle \propto 3(L_{-1})^2 |h\rangle - (2+4h)L_{-2}|h\rangle$ $|\psi_{1,3}^{(0)}\rangle \propto L_{-1} |\psi_{1,2}^{(0)}\rangle$ \longleftrightarrow $|\psi_{2,1}^{(0)}\rangle \propto L_{-1} |\psi_{2,0}^{0}\rangle$ \vdots \vdots

NOTE) Need to discard null states. $\{|0\rangle\}$ is a one-dimensional subspace. All the other subspaces are infinite dimensional.

■ Tridiagonal expression

In each subspace ($\neq \{|0\rangle\}$), $\langle \psi_{s,m}^{(n)}|\mathcal{H}_{\mathrm{SSD}}|\psi_{s,m'}^{(n)}\rangle$ takes the form:



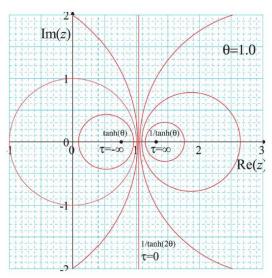
$$(f_m = m(2h + 2n + m - 1))$$

$$\begin{pmatrix} h+n+\frac{m}{2} & -\frac{\sqrt{f_{m+1}}}{2} \\ -\frac{\sqrt{f_{m+1}}}{2} & \frac{m+1}{2} \end{pmatrix}_{m,m+1}$$

(ii) The (normalizable) vacuum is unique Proof by contradiction. Suppose $|\psi_0\rangle \neq |0\rangle$ is another *E*=0 state of \mathcal{H}_{SSD} . Then we can determine the coefficients c_m recursively. $|\psi_0\rangle = \sum c_m |\psi_{s,m}^{(n)}\rangle$ But $|\psi_0\rangle$ so obtained is unnormalizable.

Relation to Mobius quantization

(Okunishi, PTP, 063A02 (2016))



Mobius transformatin:
$$u = -\frac{\sinh \theta - z \cosh \theta}{\cosh \theta - z \sinh \theta}$$

Virasoro generators

$$\mathcal{L}_n(\theta) = \oint_t \frac{\mathrm{d}u}{2\pi \mathrm{i}} u^{n+1} T^{(u)}(u) \frac{\mathrm{d}u}{\mathrm{i}^n} \oint_t \frac{\mathrm{d}z}{2\pi \mathrm{i}} \frac{(z - \tanh(\theta))^{n+1}}{(z - 1/\tanh(\theta))^{n-1}} T(z)$$

Their commutation relations are the same as those of the original Virasoro.

$$\mathcal{L}_{0}(\theta) = \cosh(2\theta) L_{0} - \sinh(2\theta) \frac{L_{1} + L_{-1}}{2}$$

$$\lim_{\theta \to \infty} \frac{\mathcal{L}_{0}(\theta)}{\cosh 2\theta} = L_{0} - \frac{L_{1} + L_{-1}}{2} \quad \text{SSD}$$
Hamiltonian!

Cf.) dipolar quantization, Ishibashi-Tada, JPA 48; IJMPA 31 (2016).

■ Unitary equivalence (Tamura-Katsura, *PTP*, 113A01 (2017))

$$\mathcal{L}_n(\theta) = e^{-\theta(L_1 - L_{-1})} L_n e^{\theta(L_1 - L_{-1})}$$

Easy to guess from the Mobius tr., but not so easy to prove...

Explain unnormalizable zero-energy states. $e^{L_{-1}}|h\rangle, \sum_{n>1}L_{-n}|0\rangle$

N=2 SCFT

J(z): $\Delta=1$ U(1) current, $G^{\pm}(z)$: $\Delta=3/2$ fermionic fields

$$[L_{m}, L_{n}] = (m - n)L_{m+n} + \frac{c}{12}(m^{3} - m)\delta_{m+n,0}, \qquad m, n \in \mathbb{Z},$$

$$[L_{m}, G_{r}^{\pm}] = \left(\frac{m}{2} - r\right)G_{m+r}^{\pm}, \qquad r, s \in \mathbb{Z} + \alpha$$

$$[L_{m}, J_{n}] = -nJ_{m+n}, \qquad \alpha = 0 \text{ (Ramond)}$$

$$[J_{m}, G_{r}^{\pm}] = \pm G_{m+r}^{\pm}, \qquad \alpha = \frac{1}{2} \text{ (Neveu - Schwarz)}$$

$$\{G_{r}^{\pm}, G_{s}^{\mp}\} = 2L_{r+s} \pm (r - s)J_{r+s} + \frac{c}{2}\left(r^{2} - \frac{1}{4}\right)\delta_{r+s,0},$$

$$\overline{\{G_r^+, G_s^+\}} = \{G_r^-, G_s^-\} = 0,
[J_m, J_n] = \frac{c}{3} m \delta_{m+n,0},$$

• H_0 in Ramond sector

$$\frac{2\pi}{\ell} \left(L_0 - \frac{c}{24} \right) = \frac{\pi}{\ell} \{ G_0^+, G_0^- \}$$

H_{SSD} in Neveu-Schwarz sector

$$\mathcal{H}_{L} = \frac{\pi}{\ell} \left(L_0 - \frac{L_1 + L_{-1}}{2} \right) = \frac{\pi}{2\ell} \{ Q, Q^{\dagger} \}$$

1-parameter family connecting R and NS (spectral flow)?

Supersymmetry

$$Q^{\dagger} = \frac{G_{\frac{1}{2}}^{+} - G_{-\frac{1}{2}}^{+}}{\sqrt{2}}$$
$$Q^{2} = (Q^{\dagger})^{2} = 0$$

Outline

- 1. Introduction
- 2. Ground state of solvable models with SSD
- 3. Excited states of solvable models with SSD
- What about excited states of SSD?
- Free-fermion chain with SSD
- Further steps towards exact solution
- 4. Summary

What about excited states of SSD?

- Gapped or gapless?
 - Lieb-Schultz-Mattis argument (Ann. Phys. 16 (1961)

G.S. of H_{SSD} (XY spin chain) Trial state

$$\Psi_0
angle$$

$$|\Psi_0\rangle$$
 $|\Psi_1\rangle := U|\Psi_0\rangle, \quad U = \exp\left(i\sum_{j=1}^L \frac{2\pi}{L}jS_j^z\right)$

Orthogonality

$$\langle \Psi_0 | \Psi_1 \rangle = \langle \Psi_0 | U | \Psi_0 \rangle$$

 $\langle \Psi_0 | \Psi_1 \rangle = \langle \Psi_0 | U | \Psi_0 \rangle$ is translation invariant.

$$= \langle \Psi_0 | TUT^{-1} | \Psi_0 \rangle = -e^{-2\pi i M/L} \langle \Psi_0 | \Psi_1 \rangle \qquad \langle \Psi_0 | \Psi_1 \rangle = 0$$

$$\langle \Psi_0 | \Psi_1 \rangle = 0$$

Upper bound on the gap

unless M (total S^z) is $\pm L/2$.

$$\Delta E = \langle \Psi_1 | H_{\rm SSD} | \Psi_1 \rangle - \langle \Psi_0 | H_{\rm SSD} | \psi_0 \rangle$$

$$= \langle \Psi_0 | U^\dagger H_{\rm SSD} U - H_{\rm SSD} | \Psi_0 \rangle$$

$$\leq \frac{\pi^2 J}{L} + O(1/L^2) \qquad \text{because } \sin^2{(\pi j/L)} \text{ is O(1) for all } j.$$

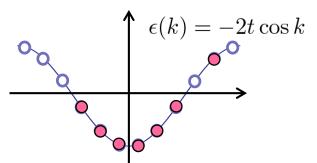
Suggests that 1d critical system with SSD is still critical. But is the upper bound optimal? \rightarrow NO!

Free-fermion chain with SSD

■ Hamiltonian (reminder)

$$\mathcal{H}_0 = -t \sum_{j=1}^L (c_j^\dagger c_{j+1} + c_{j+1}^\dagger c_j)$$

$$\mathcal{H}_{\mathrm{SSD}} = -t \sum_{j=1}^{L-1} \sin^2\left(\frac{\pi}{L}j\right) (c_j^\dagger c_{j+1} + c_{j+1}^\dagger c_j)$$
 Ansatz state: $|\Psi\rangle = \left(\sum_{l=1}^L \psi_k c_k^\dagger\right) |\mathrm{FS}\rangle$



Fermi sea + one extra fermion

Using $(\mathcal{H}_{SSD} - E_g/2)|FS\rangle = 0$, we get Harper-like eq. in *k*-space (*m*=0,1,...,*L*/2-1):

$$-\sin\left(\frac{2\pi}{L}m\right)\psi_{m-1} + 2\sin\left[\frac{2\pi}{L}\left(m + \frac{1}{2}\right)\right]\psi_m - \sin\left[\frac{2\pi}{L}(m+1)\right]\psi_{m+1} = \varepsilon\psi_m$$

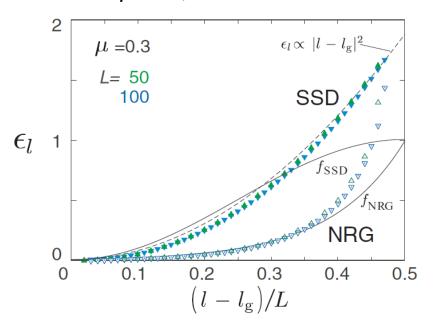
Scaling of excitation energy
 A simple variational ansatz shows

$$\varepsilon \le \frac{2\pi}{L^2} + O\left(\frac{1}{L^3}\right) \qquad \forall \psi_m = \sqrt{\frac{2}{L}}$$

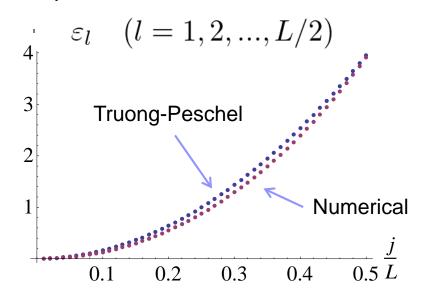
Very low-energy states! Breakdown of CFT scaling (1/L)

Scaling property of excitation energy

Hotta *et al.*, *PRB* (2013) μ =0.3, L=50 & 100.



Numerical v.s. analytical μ =0, L=100.



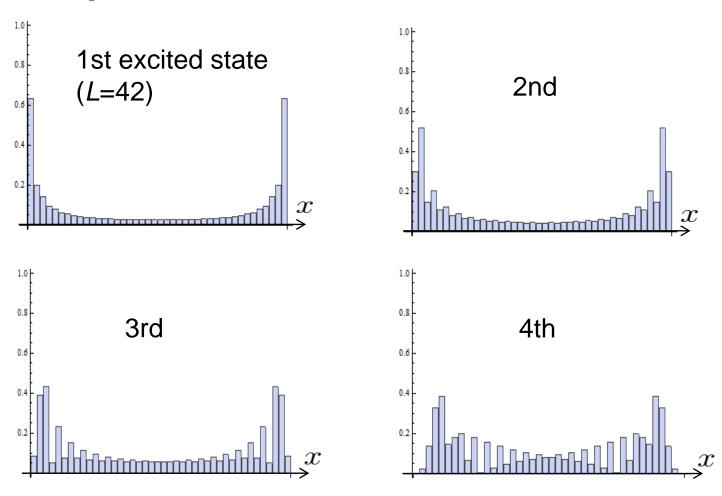
In Truong-Peschel, *IJMPB* **4** ('90), they studied a linearized model (corner Hamiltonian) and obtained

$$\epsilon_{\text{TP}}(j, L) = \frac{\pi^3}{2L(N-1)} \left(j + \frac{1}{4}\right)^2$$

Here *N* is the truncation number. *N*~*L* gives the best fit to the result.

Variational estimate seems optimal.

Spatial profile of 'extra' states



Low-energy states ~ edge states Can we get exact solutions?

Further steps towards exact solution (1)

■ (Functional) Bethe ansatz Wiegmann-Zak

Hofstadter problem: Wiegmann-Zabrodin, *PRL* (1994).

$$-\sin\left(\frac{2\pi}{L}m\right)\psi_{m-1} + 2\sin\left[\frac{2\pi}{L}\left(m + \frac{1}{2}\right)\right]\psi_m - \sin\left[\frac{2\pi}{L}(m+1)\right]\psi_{m+1} = \varepsilon\psi_m$$

Generating function

$$\Psi(z) = \sum_{m=0}^{Q-1} z^m \psi_m = \prod_{m=1}^{Q-1} (z - z_m), \quad (Q = L/2)$$

Functional relation (T-Q relation)

$$\frac{i}{2}(z^{-1}-2q^{1/2}+qz)\Psi(qz)-\frac{i}{2}(z^{-1}-2q^{-1/2}+q^{-1}z)\Psi(q^{-1}z)=\varepsilon\Psi(z)$$

Pole-free condition

 $(\text{L.H.S.})/\Psi(z)=\varepsilon \;\; \text{does not have poles.} \; o \; \text{Residues at z=} z_m \; \text{are zero!}$

Bethe eq.:

$$\begin{split} \frac{z_m^2-2q^{1/2}z_m+q}{qz_m^2-2q^{1/2}z_m+1} &= -\prod_{m=1}^{Q-1}\frac{qz_m-z_n}{z_m-qz_n}, \qquad m=1,2,...,Q-1 \\ \varepsilon &= -\frac{i}{2}(q-q^{-1})\sum_{m=1}^{Q-1}z_m-i(q^{1/2}-q^{-1/2}) \qquad \text{Asymptotic (large L) behavior??} \end{split}$$

Further steps towards exact solution (2)

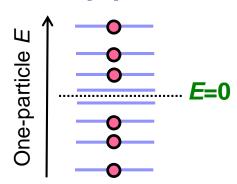
Huge degeneracy at *E*=0

uge degeneracy at
$$\emph{E}=0$$

$$\mathcal{H}_0 = -t \sum_{j=1}^L (c_j^\dagger c_{j+1} + c_{j+1}^\dagger c_j)$$

$$\mathcal{H}_{\mathrm{SSD}} = -t \sum_{j=1}^{L-1} \sin^2\left(\frac{\pi}{L} j\right) (c_j^\dagger c_{j+1} + c_{j+1}^\dagger c_j)$$

(# many-body states) = 2^{L} For both $H_0 \& H_{SSD}$, (Deg. at E=0) = $2^{L/2}$



→ A number of operators that commute with Hamiltonian

Pair-operator approach

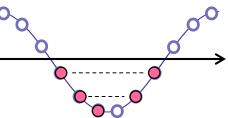
Operators commuting with $\mathcal{H}_{\mathrm{SSD}}$

$$P_{1}^{\dagger} = \sum_{j=1}^{L/2} c_{k_{\mathrm{F}}+(j-1/2)\delta}^{\dagger} c_{k_{\mathrm{F}}-(j-1/2)\delta}^{\dagger}$$

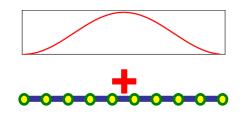
$$P_{2}^{\dagger} = \sum_{j=1}^{L/2} e^{-\mathbf{i}j\delta} c_{k_{\mathrm{F}}+(j-1/2)\delta}^{\dagger} c_{-k_{\mathrm{F}}+(j-1/2)\delta}^{\dagger}$$

Exact many-body eigenstates appear when N=L/4. They are also eigenstates of uniform Hamiltonian.

E=0 states of \mathcal{H}_{SSD} $(P_1^{\dagger})^m (P_2^{\dagger})^n |\varphi\rangle$



Hamiltonian with Sine-Square Deformation (SSD) shares the same ground state with periodic chain.



Mechanism of SSD

Chiral Hamiltonians annihilate the periodic g.s.

$$\mathcal{H}_{\mathrm{SSD}} = \frac{1}{2}\mathcal{H}_0 - \frac{1}{4}(\mathcal{H}_+ + \mathcal{H}_-)$$

$$\mathcal{H}_{\pm}|0
angle=0$$
 \mathcal{H}_{-} \mathcal{H}_{+} fermions

Ex) Free-fermion chain, anisotropic XY, Dirac fermions

CFT interpretation:

- Chiral Hamiltonians are $L_{\pm 1}$ in CFT
- $SL(2, \mathbf{C})$ invariance $\rightarrow L_0|0\rangle = L_{\pm 1}|0\rangle = 0$
- The vacuum state $|0\rangle$ is the unique (normalizable) *E*=0 state of $\mathcal{H}_{\mathrm{SSD}}$.

Future directions

- Exact results for lattice SSD not reducible to free fermions
- Excited states of free fermions with SSD
 Related work: SUSY QM approach (Okunishi-H.K., JPA 48 ('15))