Collegium Urbis Nov Eborac

ಸೈದ್ಧಾಂತಿಕ ವಿಜ್ಞಾನಗಳ ಅಂತರರಾಷ್ಟ್ರೀಯ ಕೇಂದ್ರ

Calogero Particles and Fluids A Review Lecture 2

August 3, 2018

The Casimirs of L and R are $I_n = \text{Tr} L^n$, $\tilde{I}_n = \text{Tr} R^n$, thus

$$[I_n, I_m] = [\tilde{I}_n, \tilde{I}_m] = [I_n, \tilde{I}_m] = 0$$

- We recovered Quantum Integrals of the matrix model
- I_n and \tilde{I}_n are related:

$$\operatorname{Tr} L^{n} = \operatorname{Tr} (N - R)^{n} - \sum_{k=0}^{n-1} \operatorname{Tr} (N - R)^{k} \operatorname{Tr} L^{n-k-1}$$

The Hamiltonian can be written

$$H = \operatorname{Tr} \mathbf{H}$$
, $\mathbf{H} = \frac{1}{2}\omega(AA^{\dagger} + A^{\dagger}A) = \frac{1}{2}\omega(L - R + N)$

and therefore

$$H = \omega I_1 + \omega \frac{N^2}{2}$$

so it is a member of the I_N . It satisfies

$$[H, A^{\dagger}] = \omega A^{\dagger}$$
, $[H, A] = -\omega A$

We obtain N^2 creation operators producing all states

Rreduction to sectors and spectrum

Quantum conserved angular momentum

$$J = i : [M, P]_{\text{matrix}} : = : [A^{\dagger}, A]_{\text{matrix}} : = L + R$$
, $\text{Tr} J = 0$

SU(N) algebra generating unitary conjugations $M o UMU^{-1}$

- Fix a representation of SU(N) (choose the 'form' of J)
- Identify states related through J (use residual symmetry)

Identifying irreps of J

• L and R are Jordan-Schwinger realizations of U(N) on N (anti)fundamentals

$$L_{jk} = \sum_{s} A_{js}^{\dagger} A_{sk} = \sum_{s} L_{s,jk} , R_{jk} = -\sum_{s} A_{sk}^{\dagger} A_{js} = \sum_{s} R_{s,jk}$$

 $L_{s,jk}$, $R_{s,jk}$ are N mutually commuting U(N) algebras

$$[L_{s1}, L_{s'2}] = \delta_{ss'}(L_{s1} - L_{s2})T_{12}$$
, $[R_{s1}, R_{s'2}] = \delta_{ss'}(R_{s1} - R_{s2})T_{12}$

$$[L_{s1}, R_{s'2}] = 0$$

Choosing an irrep for J:

$$J = \sum_{s} L_{s} + \sum_{s} R_{s}$$

- Each L_s and R_s contains all symmetric products of (anti)fundamentals
- Full L and R contain all irreps (with multiplicities)
- Reps carried by L and R are conjugate (Casimirs are related)
- Therefore, J = L + R contains reps of the form $r \times \bar{r}$
- ullet For such irreps the U(1) charge and the Z_N charge of J vanish

Young tableaux boxes of J are multiple of N

We must construct oscillator states belonging to such irreps

Constructing the states

From ground state $|0\rangle$, $A_{jk}|0\rangle = 0$, act with any number of creation operators:

$$|j_1, k_1; j_2, k_2; \dots j_n k_n\rangle = A_{j_1 k_1}^{\dagger} A_{j_2 k_2}^{\dagger} \dots A_{j_n k_n}^{\dagger} |0\rangle$$

- j_s indices: fundamental of L; k_s indices: antifundamental of R
- Rep of $J: (F \times \cdots \times F) \times (\bar{F} \times \cdots \times \bar{F})$
- Sectors: Clebsch-Gordan decomposition into irreps of J
- ullet Calogero sector: J rank one $\Rightarrow \ell N$ -symmetric irrep, ℓ integer

Trick: put
$$J_{jk} = \psi_k^{\dagger} \psi_j - \ell \delta_{jk}$$
, $[\psi_j, \psi_k^{\dagger}] = \delta_{jk}$

That is, form singlets of $J+J_{\psi}+\ell$, with $(J_{\psi})_{jk}=-\psi_k^{\dagger}\psi_j$ Tracing the above relation gives

$$\operatorname{Tr} J_{\psi} + \ell N = 0 \ \Rightarrow \ \sum_{i} \psi_{j}^{\dagger} \psi_{j} = \ell N$$

The generic form of the states is

$$\prod_{n=1}^{N} \left[\operatorname{Tr}(A^{\dagger})^{n} \right]^{m_{n}} \left[\epsilon_{j_{1} \dots j_{N}} \psi_{j_{1}}^{\dagger} (\psi^{\dagger} A^{\dagger})_{j_{2}} \dots \left(\psi^{\dagger} (A^{\dagger})^{N-1} \right)_{j_{N}} \right]^{\ell} |0\rangle$$

Energy given by the total number of A^\dagger oscillators appearing in the state plus $\omega N^2/2$

$$E = \omega \left(\sum_{k=1}^{N} m_k + \ell \frac{N(N-1)}{2} + \frac{N^2}{2} \right)$$

- Energies of N noninteracting bosons in oscillator potential
- m_k : gap between the top k bosons and the next lower one
- Bosonization: same spectrum as N noninteracting fermions
- m_k+1 : gap between the top k fermions and the next lower one So we may rewrite the above spectrum as

$$E = \omega \left(\sum_{i=1}^{N} n_i + \ell \frac{N(N-1)}{2} + \frac{N^2}{2} \right) = \omega \left(\sum_{i=1}^{N} \bar{n}_i + \frac{N}{2} \right)$$

 $n_1 \leq n_2 \leq \dots n_N$ are single-particle bosonic excitation numbers 'Pseudoexcitation' numbers \bar{n}_i have been defined as

$$ar{n}_i = n_i + (\ell+1)(i-1) \;, \quad ar{n}_i \leq ar{n}_{i+1} + \ell$$

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

• One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

• One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

ullet One puzzle: Why must ℓ be an integer?

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

 One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

ullet One puzzle: Why must ℓ be an integer?

Because of group theory!

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

• One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

ullet One puzzle: Why must ℓ be an integer?

Because of group theory!

Yes, but why? Not needed in particle system!

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

• One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J} = \ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

• One puzzle: Why must ℓ be an integer?

Because of group theory!

Yes, but why? Not needed in particle system!

We augmented the gauge symmetry from S_N to SU(N)The larger gauge symmetry may have anomalies!

A 'monopole-like' quantization is needed to avoid anomaly

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

 One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

ullet One puzzle: Why must ℓ be an integer?

Because of group theory!

Yes, but why? Not needed in particle system!

We augmented the gauge symmetry from S_N to SU(N)

The larger gauge symmetry may have anomalies!

A 'monopole-like' quantization is needed to avoid anomaly

• Since $g = \ell(\ell+1) = \bar{\ell}(\bar{\ell}-1), \ \bar{\ell} = \ell+1 = 1, 2, \dots$ Where is $\bar{\ell} = 0$ (bosons)?

We recovered Integrability and energy spectrum of quantum harmonic Calogero model

• One question: where is the QM particle model? What is the potential strength g?

Turns out to be $C_{2,J}=\ell(\ell+1)$. More on this and the particle correspondence in the unitary matrix model

ullet One puzzle: Why must ℓ be an integer?

Because of group theory!

Yes, but why? Not needed in particle system!

We augmented the gauge symmetry from S_N to SU(N)

The larger gauge symmetry may have anomalies!

A 'monopole-like' quantization is needed to avoid anomaly

• Since $g = \ell(\ell+1) = \bar{\ell}(\bar{\ell}-1)$, $\bar{\ell} = \ell+1 = 1, 2, \ldots$ Where is $\bar{\ell} = 0$ (bosons)?

Gone! Matrix model fermionizes particles (renormalizes ℓ to $\ell+1$)

The unitary matrix model: Classical analysis

Particles on unit circle (periodic): phases of eigenvalues of a unitary matrix U

$$\mathcal{L} = -\frac{1}{2} \text{Tr}(U^{-1}\dot{U})^2 \Rightarrow \frac{d}{dt} (U^{-1}\dot{U}) = 0$$

- Invariant under $U \rightarrow VUW^{-1}$, V, W unitary
- Two conserved matrix angular momenta L and R:

$$U \rightarrow VU$$
: $L = i\dot{U}U^{-1}$
 $U \rightarrow UW^{-1}$: $R = -iU^{-1}\dot{U}$

ullet Unitary conjugation corresponds to W=V with generator

$$J = L + R = i[\dot{U}, U^{-1}]$$

As in Hermitian case, parametrize

$$U = V \Lambda V^{-1}$$
 with $\Lambda = diag\{e^{ix_i}, \dots e^{ix_N}\}$

Hamiltonian becomes, after a few steps,

$$H = \sum_{i} \frac{1}{2} p_{i}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{K_{ij} K_{ji}}{4 \sin^{2} \frac{x_{i} - x_{j}}{2}} , \quad K = V^{-1} JV$$

- J = K = 0 reproduces free particles on the circle
- $J = \ell(uu^{\dagger} 1) \Rightarrow K_{ij}K_{ji} = \ell^2$ recovers the Sutherland inverse-sine-square model

$$H = \sum_{i} \frac{1}{2} \dot{x}_{i}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{\ell^{2}}{4 \sin^{2} \frac{x_{i} - x_{j}}{2}}$$

Integrable and solvable by the same techniques as the Hermitian model. The conserved invariant quantities are

$$I_n = \operatorname{Tr} L^n = \operatorname{Tr} (-R)^n = \operatorname{Tr} (iU^{-1}\dot{U})^n$$

and the solution is

$$U = B e^{iCt}$$

with B a unitary and C a hermitian matrix satisfying

$$BCB^{-1} - C = J$$

For the Sutherland case with $J=\ell(uu^\dagger-1),\ u_i=1,\ B,\ C$ become

$$B_{jk} = \delta_{jk} e^{iq_j}$$
, $C_{jk} = \delta_{jk} p_j + (1 - \delta_{jk}) \frac{i\ell}{e^{i(q_j - q_k)} - 1}$

 q_j and p_j are initial positions and momenta

• q = x/a and limit $a \to 0$ recovers (free) Calogero system

Unitary matrix model: quantization

- Matrices L and R similar to those in Hermitian model
- ullet Hamiltonian proportional to $I_2={
 m Tr}\,{\cal L}^2$ rather than I_1
- Diagonalize I_2 (I_1 is degenerate)
- Find quantum states in J sectors

Canonical momentum matrix conjugate to the 'coordinate' U

$$\Pi = \frac{\partial \mathcal{L}}{\partial \dot{U}} = -U^{-1}\dot{U}U^{-1} \ , \ \ [U_1, \Pi_2] = iT_{12}$$

 Π is neither unitary nor hermitian. Better to work in terms of hermitian L and R defined previously

$$L = i\dot{U}U^{-1} = -iU\Pi$$
, $R = -iU^{-1}\dot{U} = i\Pi U$

$$[L_1, L_2] = (L_1 - L_2)T_{12}, [R_1, R_2] = (R_1 - R_2)T_{12}, [L_1, R_2] = 0$$

Again two U(N) algebras. U(1) charges

$$I_1 = L^o = -R^o = \text{Tr}(-iU^{-1}\dot{U}) = \sum p_i$$

are essentially the total momentum of the system.

Construction of states in U-representation:

- States become functions of U
- ullet Π becomes the matrix derivative $\Pi=-i\delta_U$ acting as

$$\delta_U \operatorname{Tr}(UB) = B$$
, $\delta_U \operatorname{Tr}(U^{-1}B) = -U^{-1}BU^{-1}$

and similarly on expressions containing more Us.

• L and R, upon proper ordering, are represented as

$$L = -U\delta_U$$
, $R = \delta_U \cdot U$

and thus

$$L \operatorname{Tr}(UB) = -UB$$
, $L \operatorname{Tr}(U^{-1}B) = BU^{-1}$
 $R \operatorname{Tr}(UB) = BU$, $R \operatorname{Tr}(U^{-1}B) = -U^{-1}B$

or

$$\operatorname{Tr}(i\epsilon L)f(U) = f((1-i\epsilon)U) - f(U)$$

$$\operatorname{Tr}(i\epsilon R)f(U) = f(U(1+i\epsilon)) - f(U)$$

for an infinitesimal matrix ϵ

Hamiltonian: Laplacian operator on the manifold

$$H = \frac{1}{2} \mathrm{Tr} L^2 = \frac{1}{2} \mathrm{Tr} R^2$$

Common quadratic Casimir of the left- and right-U(N) algebra

- Irreps of L and R U(N) are degenerate energy eigenstates.
- U(1) (center of mass) part trivially separates: boost by multiplying the wavefunction by $(\det U)^p$
- Will focus on the SU(N) part

 $R_{\alpha\beta}(U)$, $\alpha,\beta=1,\ldots d_R$: matrix element of U in irrep R Complete orthonormal basis of wavefunctions for U:

(Haar measure)
$$\int [dU] R_{\alpha\beta}(U) R'_{\gamma\delta}(U)^* = \delta_{RR'} \, \delta_{\alpha\gamma} \, \delta_{\beta\delta}$$

ullet Group property: $R_{lphaeta}(UV) = \sum_{\gamma} R_{lpha\gamma}(U) R_{\gammaeta}(V)$

Let us show explicitly that $R_{\alpha\beta}(U)$ is an energy eigenstate:

$$\operatorname{Tr}(i\epsilon L)R_{lphaeta}(U) = R_{lphaeta}((1-i\epsilon)U) - R(U)$$

$$= \sum_{\gamma} R_{lpha\gamma}(1-i\epsilon)R_{\gammaeta}(U) - R_{lphaeta}(U)$$

$$= -i\sum_{\gamma} R_{lpha\gamma}(\epsilon)R_{\gammaeta}(U)$$

and thus

thus
$$= -i \sum_{\gamma} R_{\alpha\gamma}(\epsilon) R_{\gamma\beta}(0)$$
$$\operatorname{Tr}(i\epsilon_1 L) \operatorname{Tr}(i\epsilon_2 L) R_{\alpha\beta}(U) = -\sum_{\gamma\delta} R_{\alpha\gamma}(\epsilon_2) R_{\gamma\delta}(\epsilon_1) R_{\delta\beta}(U)$$

Choosing $\epsilon_1 = \epsilon_2 = T^a$ and summing over a

$$\sum_{a} \operatorname{Tr}(T^{a}L) \operatorname{Tr}(T^{a}L) R_{\alpha\beta}(U) = \sum_{a} \sum_{\gamma} (R^{a}R^{a})_{\alpha\gamma} R_{\gamma\beta}(U)$$

From completeness

$$\sum_{a} \operatorname{Tr}(T^{a}L)\operatorname{Tr}(T^{a}L) = \operatorname{Tr}L^{2}$$

$$\sum_{a} (R^{a}R^{a})_{\alpha\gamma} = C_{2,R} \, \delta_{\alpha\gamma}$$

From irreducibility of R

$$\sum_{a} (R^a R^a)_{\alpha \gamma} = C_{2,R} \, \delta_{\alpha \gamma}$$

with $C_{2,R}$ the quadratic Casimir of U(N), giving

$$\operatorname{Tr} L^2 R_{\alpha\beta}(U) = C_{2,R} R_{\alpha\beta}(U)$$

$$H R_{\alpha\beta}(U) = E_R R_{\alpha\beta}(U) \; , \quad E_R = \frac{1}{2} C_{2,R}$$

- Energy E_R is that of N free fermions on the circle with the ground state energy subtracted
- Lengths of rows R_i of the Young tableau of R correspond to the "bosonized" fermion momenta $p_i = R_i i + 1$
- The condition $R_i \ge R_{i+1}$ for the rows amounts to the fermionic condition $p_i > p_{i+1}$
- The spectrum of the full matrix model, then, is identical to the free fermion one but with degeneracies d_R^2

Reduce to sectors (representations) of J

- Identify the corresponding reduced quantum model
- Identify the subspace of states belonging to the reduced model
- $R_{\alpha\beta}(U)$ carries irrep R for L and \bar{R} for R
- Rep of J = L + R is $R \times \overline{R}$ (as in Hermitian model)

States for irrep r of J become

$$\Psi_{R,r}(U) = \sum_{\alpha,\beta} C[R,\bar{R};r]_{\gamma}^{\alpha\beta} R_{\alpha\beta}(U)$$

 $C[R, \bar{R}; r]_{\gamma}^{\alpha\beta}$ projects states α of R and β of \bar{R} to state γ of r

- ullet d_r states corresponding to various γ are gauge copies
- Degeneracy corresponds to number of irreps r in $R \times \bar{R}$ r
- Call this integer D(R, r); spectrum and degeneracies are

$$E_R = \frac{1}{2}C_R$$
, $D_R = D(R, r)$

If $D_R = 0$ the corresponding energy level is absent

We have determined the spectrum for any irrep r of J

- r = 0 should correspond to free fermions
- $r = \ell N$ -symmetric should correspond to Sutherland particles

Before finding the spectrum let us derive the QM particle model

Reduction to spin-particle systems

Classically we found

$$H = \sum_{i} \frac{1}{2} p_{i}^{2} + \frac{1}{2} \sum_{i \neq j} \frac{K_{ij} K_{ji}}{4 \sin^{2} \frac{x_{i} - x_{j}}{2}} - E_{o}$$

To extend it to the QM domain we must

- Determine appropriate ordering of operators
- ullet Take into account correct measure [cf. Cartesian o polar]

Write metric $-\text{Tr}(U^{-1}dU)^2$ in terms of $U = V\Lambda V^{-1}$

$$-\text{Tr}(U^{-1}dU)^{2} = \sum_{i} dx_{i}^{2} + \sum_{i,j} 4 \sin^{2} \frac{x_{i} - x_{j}}{2} \left| (V^{-1}dV)_{ij} \right|^{2}$$

Diagonal in dx_i and $(V^{-1}dV)_{ij}$; so volume form is

$$[dU] = \Delta(x)^2 [dx] [dV] , \quad \Delta(x) = \prod_{i < j} 2 \sin \frac{x_i - x_j}{2} , \quad [dx] = \prod_j dx_j$$

[dU], [dV] are Haar measures and $\Delta(x)$ is the unitary Vandermonde

To have 'flat' x_j -Laplacian $(\sum_j \partial_j^2)$, redefine wavefunction

$$\psi(x,V) = \Delta(x)\Psi(U)$$

- Produces an additive constant E_o (cf. $-1/4r^2$ in 2d polar)
- $\Delta(x)$ is ground state of N fermions $\Rightarrow E_o = \frac{N(N^2-1)}{24}$
- \bullet $\psi(x, V)$ becomes fermionic in x: fermionization of eigenvalues

Ordering and properties of K: generator of transformations

- ullet J generates $U o WUW^{-1}$
- Since $U = V \Lambda V^{-1}$, J generates $V \to WV$
- Therefore, $K = V^{-1}JV$ generates $V \to VW^{-1}$

K is also an SU(N) algebra. Some constraints:

- K carries the same irrep r as J
- ullet $V o VW^{-1}$ with W diagonal leaves $U=V\Lambda V^{-1}$ invariant
- Therefore states must be invariant $\Rightarrow K_{ii}\psi = 0$ (no sum)
- K does not commute with H, but above constraint does

Let there be spins

Realize K in a Jordan-Wigner construction with Nq oscillators

$$[a_{mj}, a_{nk}^{\dagger}] = \delta_{mn}\delta_{jk}$$
, $j, k = 1, \dots N$, $m, n = 1, \dots q$

$$K_{jk} = \sum_{m=1}^{q} a_{mj}^{\dagger} a_{mk} - \ell \delta_{jk}$$

The constraint $K_{jj}=0$ on physical states ψ means

$$\sum_{m=1}^{q} a_{mj}^{\dagger} a_{mj} \; \psi = \ell \; \psi$$

requiring, again, that ℓ be integer

The coefficient of the particle potential becomes $(j \neq k)$

$$K_{jk}K_{kj}=\sum_{m,n}a_{mj}^{\dagger}a_{nj}\;a_{nk}^{\dagger}a_{mk}+\ell$$

DOF of K redistributed into DOF for each particle

Define independent SU(q) spins for each particle

$$S_{j,mn}=a_{mj}^{\dagger}a_{nj}-rac{\ell}{q}\delta_{mn}$$

In terms of spins

$$\mathcal{K}_{ij}\mathcal{K}_{ji} = \sum_{mn} \mathcal{S}_{i,mn}\mathcal{S}_{j,nm} + rac{\ell(\ell+q)}{q} = \vec{\mathcal{S}}_i \cdot \vec{\mathcal{S}}_j + rac{\ell(\ell+q)}{q}$$

 $\vec{S_i} \cdot \vec{S_i} = \operatorname{Tr}(S_i S_j)$ is the SU(q)-scalar product of the two vectors The QM Hamiltonian becomes

$$H = \sum_{j} \frac{1}{2} p_{j}^{2} + \sum_{j < k} \frac{\vec{S}_{i} \cdot \vec{S}_{j} + \frac{\ell(\ell+q)}{q}}{4 \sin^{2} \frac{x_{i} - x_{j}}{2}}$$

- Particles carry SU(q) spins in the ℓ -fold symmetrix irrep
- Sutherland potential contains an antiferromagnetic interaction between the spins and a constant
- Coefficient and constant fixed not free parameters
- q=1: no spins, Sutherland model with $g=\ell(\ell+1)$

Spectrum of the particle-spin model

Basic idea:

- Decompose total spin $\vec{S} = \sum_j \vec{S}_j$ into irreps of SU(q): Young tableaux up to q rows with ℓN boxes
- Interpret them as SU(N) irreps r of K or J
- Read off spectrum and degeneracy as derived before

Let us reproduce the two simplest cases

- a) Free particles: q=0 or $\ell=0$, J=K=0
 - r = 0: No spin, no potential, free particles
 - D(R, 0) = 1, free fermion spectrum (fermionization)
- b) Spinless Sutherland particles: q=1
 - ullet $r=[\ell N]$, single-row, ℓN boxes: no spin, Sutherland particles
 - D(R,r)=1 if each row at least ℓ boxes longer than next, else 0
 - Free particles with momentum selection rule $p_j \geq p_{j+1} + \ell + 1$ Particles with generalized statistic of order $\ell + 1$

Other realizations of K lead to more general spin models

• A realization in terms of *fermionic* oscillators leads to ℓ -fold antisymmetric SU(q) spins with *ferromagnetic* interactions

$$H = \sum_{j} \frac{1}{2} p_{j}^{2} - \sum_{j < k} \frac{\vec{S}_{j} \cdot \vec{S}_{k} + \frac{\ell(\ell - q)}{q}}{4 \sin^{2} \frac{x_{i} - x_{j}}{2}}$$

with spins in the ℓ -fold *antisymmetric* irrep of SU(q)

 A single bosonic and a single fermionic oscillator reproduces the so-called supersymmetric Calogero model

Other matrix choices possible

- Positive definite matrices (constant negative curvature spaces) lead to the hyperbolic Calogero model
- Also obtained through analytic continuation $x \to ix$

Farewell to Matrices

The Matrix Model has provided us with:

- An augmentation of S_N to SU(N) and the corresponding possibility to define statistics through irreps of SU(N).
- ullet A realization of generalized scalar statistics but with a quantized Calogero statistics parameter $\ell+1$
- A realization of generalized 'non-abelian statistics' in terms of spin degrees of freedom in the Calogero potential.
- 4. A systematic way of solving the above models.

What the matrix model has not provided is

- ullet A realization of the Calogero model for fractional values of ℓ
- A realization of spin-Calogero systems with the spins in arbitrary (non-symmetric or antisymmetric) representations.
- A control of the coupling strength of the potential for the spin-Calogero models.

A new approach is needed!

Exchange operator formalism

Operators M_{ij} permute the *coordinate* DOF of N particles in one dimension. They satisfy the permutation algebra (symmetric group)

$$M_{ij} = M_{ij}^{-1} = M_{ij}^{\dagger} = M_{ji}$$

 $[M_{ij}, M_{kl}] = 0$ if i, j, k, l distinct
 $M_{ij}M_{jk} = M_{ik}M_{ij}$ if i, j, k distinct

One-particle operators: any A_i satisfying

$$M_{ij}A_k = A_k M_{ij}$$
 if i, j, k distinct
 $M_{ij}A_i = A_j M_{ij}$

Construct the exchange-momenta one-particle operators

$$\pi_j = p_j + \sum_{k(\neq j)} i W(x_j - x_k) M_{jk} := p_j + \sum_{k(\neq j)} i W_{jk} M_{jk}$$

For π_i to be Hermitian the prepotential W(x) should satisfy

$$W(-x) = -W(x)^*$$

'Free' Hamiltonian in π_i would be $H = \sum_j \frac{1}{2} \pi_j^2$ Contains terms linear in p_j : to eliminate them

$$W(-x) = -W(x) = \text{real}$$

Commutators of π_i and Hamiltonian become

$$[\pi_i, \pi_j] = \sum_k W_{ijk} (M_{ijk} - M_{jik})$$

$$H = \sum_{i} \frac{1}{2} p_{i}^{2} + \sum_{i < j} \left(W_{ij}^{2} + W_{ij}' M_{ij} \right) + \sum_{i < j < k} W_{ijk} M_{ijk}$$

where $M_{ijk} = M_{ij}M_{jk}$ is cyclic permutation of (i,j,k) and

$$W_{ijk} = W_{ij}W_{jk} + W_{jk}W_{ki} + W_{ki}W_{ij}$$

- Goal: commutator zero or a constant
- This leads to functional equation for W(x):

$$W(x)W(y) - W(x+y)[W(x) + W(y)] = const(= W_{ijk})$$

Can be solved and we will list its solutions (up to scaling of x)

a)
$$W_{ijk} = 0 \Rightarrow W(x) = \ell/x$$

b)
$$W_{ijk} = -\ell^2 < 0 \quad \Rightarrow \quad W(x) = \ell \cot x$$

c)
$$W_{ijk} = +\ell^2 > 0 \implies W(x) = \ell \coth x$$

Case a)
$$\pi_j = p_j + \sum_{k \neq j} \frac{i\ell}{x_{jk}} M_{jk} , \quad [\pi_j, \pi_k] = 0$$

$$H = \sum_i \frac{1}{2} p_i^2 + \sum_{i < j} \frac{\ell(\ell - M_{ij})}{x_{ij}^2}$$

- Calogero-like model with exchange interactions
- Trivially integrable: $I_n = \sum_i \pi_i^n$

Assume particles are bosons or fermions: $M_{ij}=\pm 1$ on states

- The model becomes the standard Calogero model
- Projected integrals $I_{n,\pm}$ commute
- Commutativity implied by $[I_n, I_m] = 0$ and locality of $I_{n,\pm}$

We proved quantum integrability of Calogero model in one sweep!

Construct 'harmonic oscillator' operators

$$a_j = \frac{1}{\sqrt{2}} \left(\pi_j - i\omega x_j \right) , \quad a_j^{\dagger} = \frac{1}{\sqrt{2}} \left(\pi_j + i\omega x_i \right)$$

Their commutators are calculated as

$$[a_i, a_j^{\dagger}] = \omega \left(1 + \ell \sum_{k \neq i} M_{ik} \right) \delta_{ij} - \omega \ell M_{ij} \left(1 - \delta_{ij} \right)$$
$$[a_i, a_j] = [a_i^{\dagger}, a_j^{\dagger}] = 0$$

Oscillator Hamiltonian reads

$$H = \sum_{i} \frac{1}{2} (a_{i}^{\dagger} a_{i} + a_{i} a_{i}^{\dagger}) = \sum_{i} \frac{1}{2} p_{i}^{2} + \sum_{i} \frac{1}{2} \omega^{2} x_{i} + \sum_{i < j} \frac{\ell(\ell - M_{ij})}{x_{ij}^{2}}$$

and satisfies

$$[H, a_i] = \omega a_i , \quad [H, a_i^{\dagger}] = \omega a_i^{\dagger}$$

- Harmonic Calogero-like model with exchange interactions
- Becomes standard harmonic model on bosonic or fermionic subspaces
- Can use ladder operators to construct states

$$H = \sum_{i} a_{i}^{\dagger} a_{i} + \frac{1}{2} N \omega + \frac{1}{2} \ell \omega \sum_{i \neq j} M_{ij}$$

On bosonic or fermionic states the state annihilated by all a_i (if it exists) will be the ground state. Solving $a_i\psi=0$

$$\begin{array}{rcl} \psi_B & = & \displaystyle \prod_{i < j} |x_{ij}|^\ell \mathrm{e}^{-\frac{1}{2}\omega \sum_i x_i^2} \\ \\ \psi_F & = & \displaystyle \prod_{i < j} \left\{ \mathit{sgn}(x_{ij}) |x_{ij}|^{-\ell} \right\} \mathrm{e}^{-\frac{1}{2}\omega \sum_i x_i^2} \end{array}$$

- ullet Bose state for $\ell>0$ and Fermi state for $\ell<0$ are acceptable
- In the "wrong" combinations GS involves $|\ell|+1$ and is annihilated by permutation-invariant combinations of the a_i
- Spectrum obtained by acting on ground state with all possible permutation-symmetric homogeneous polynomials in a_i^{\dagger}

A basis is
$$A_n = \sum_i (a_i^\dagger)^n$$

Spectrum identical to non-interacting fermions or bosons, but with ground state energy shift

$$E_o = \frac{N}{2}\omega + \frac{N(N-1)}{2}|\ell|\omega$$

The one-particle operators $h_i = a_i^{\dagger} a_i$ obey

$$[h_i, h_j] = -\omega \ell (h_i - h_j) M_{ij}$$

and this leads to commuting invariant quantities

$$I_n = \sum_i (a_i^{\dagger} a_i)^n \; , \quad [I_n, I_m] = 0$$

proving integrability. Similar results hold for

$$\tilde{h}_i = a_i a_i^\dagger \ , \quad \tilde{I}_n = \sum_i (a_i a_i^\dagger)^n$$
 Case b)
$$\pi_j = p_i + i\ell \sum_{k \neq j} \cot x_{ij} M_{ij}$$

$$[\pi_i, \pi_j] = -\ell^2 \sum_i (M_{ijk} - M_{jik})$$

The Hamiltonian becomes

$$H = \sum_{i} \frac{1}{2} p_{i}^{2} + \sum_{i < j} \frac{\ell(\ell - M_{ij})}{\sin^{2} x_{ij}} - \ell^{2} \left(\frac{N(N-1)}{2} + \sum_{i < j < k} M_{ijk} \right)$$

- Sutherland-like model with exchange interactions
- On Bose or Fermi states it becomes standard Sutherland model
- $H=\sum_i \pi_i^2$, so if a state $\pi_i \psi=0$ exists it is the ground state We obtain

$$\psi_B = \prod_{i < j} |\sin x_{ij}|^{\ell}$$

$$\psi_F = \prod_{i < i} sgn(x_{ij}) |\sin x_{ij}|^{\ell}$$

- Acceptable for Bose, $\ell > 0$ or Fermi, $\ell < 0$
- ullet For both cases $M_{ijk}=1$ so

$$E_o = \ell^2 \frac{N(N^2 - 1)}{24}$$

The quantities

$$\tilde{\pi}_i = \pi_i + \ell \sum_{j \neq i} M_{ij}$$

have the same commutation relations as the h_i defined previously for the harmonic system. Therefore, the integrals

$$I_n = \sum_i \tilde{\pi}_i^n$$
, $[I_n, I_m] = 0$

commute and the model is integrable.

Case c)

$$H = \sum_{i} \frac{1}{2} p_{i}^{2} + \sum_{i < j} \frac{\ell(\ell - M_{ij})}{\sinh^{2} x_{ij}} + \ell^{2} \left(\frac{N(N-1)}{2} + \sum_{i < j < k} M_{ijk} \right)$$

- Hyperbolic model with exchange interactions
- Supports only scattering states
- Integrability similary as for the trigonometric model, or through analytic continuation $x \to ix$

All the above work directly, and only, for the quantum case

Let there be spin (again!)

Assume particles carry a number q of discrete internal states

- ullet σ_{ij} exchanges the internal states of particles i and j
- ullet Total particle permutation operator is $T_{ij}=M_{ij}\,\sigma_{ij}$

Assume states bosonic or fermionic under total particle exchange

$$T_{ij}\psi_{B,F} = \pm \psi_{B,F} \quad \Rightarrow \quad M_{ij}\psi_{B,F} = \pm \sigma_{ij}\psi_{B,F}$$

Exchange Calogero and Sutherland Hamiltonians become

$$H_c = \sum_{i} \frac{1}{2} \rho_i^2 + \sum_{i} \frac{1}{2} \omega^2 x_i + \sum_{i < j} \frac{\ell(\ell \mp \sigma_{ij})}{x_{ij}^2}$$

$$H_s = \sum_{i} \frac{1}{2} p_i^2 + \sum_{i < j} \frac{\ell(\ell \mp \sigma_{ij})}{\sin^2 x_{ij}} - \ell^2 \left(\frac{N(N-1)}{2} + \sum_{i < j < k} \sigma_{ijk} \right)$$

Calogero-Sutherland models with spin-exchange interactions

Fundamental SU(q) generators T^a satisfy completeness relation

$$\sum_{a=1}^{q^2-1} T^a_{\alpha\beta} T^a_{\gamma\delta} = \delta_{\alpha\delta} \delta_{\gamma\beta} - \frac{1}{q} \delta_{\alpha\beta} \delta_{\gamma\delta} \quad \text{or} \quad \sum_a T_1 T_2 = T_{12} - \frac{1}{q}$$

Therefore

$$\sigma_{ij} = \vec{S}_i \cdot \vec{S}_j + \frac{1}{q}$$

where S_i^a is T^a acting on internal states of particle i Calogero-Sutherland interaction coefficient becomes

$$\ell(\ell \mp \sigma_{ij}) = \ell \left(\mp \vec{\mathcal{S}}_i \cdot \vec{\mathcal{S}}_j + \ell \mp rac{1}{q}
ight)$$

- Ferro/Antiferromagnetic spin interaction models (as in Matrix)
- Arbitrary coefficient strength (ℓ)
- Spins necessarily in the fundamental of SU(q)
- Ferro \rightarrow Antiferro: B \rightarrow F or $\ell \rightarrow -\ell$
- $\ell = 1$: Matrix and Exchange models agree (B \leftrightarrow fundamental, F \leftrightarrow antifundamental)

We are now ready to determine the spectrum of these spin-Calogero models. This will be done in Lecture 3.