Integrability in the Laplacian Growth Problem

E. Bettelheim

Hebrew University, Jerusalem

July 20th, 2018 ICTS, Bangalore

Integrable systems in M, CM, and SM.

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

Physics of Laplacian Growth

-Physics

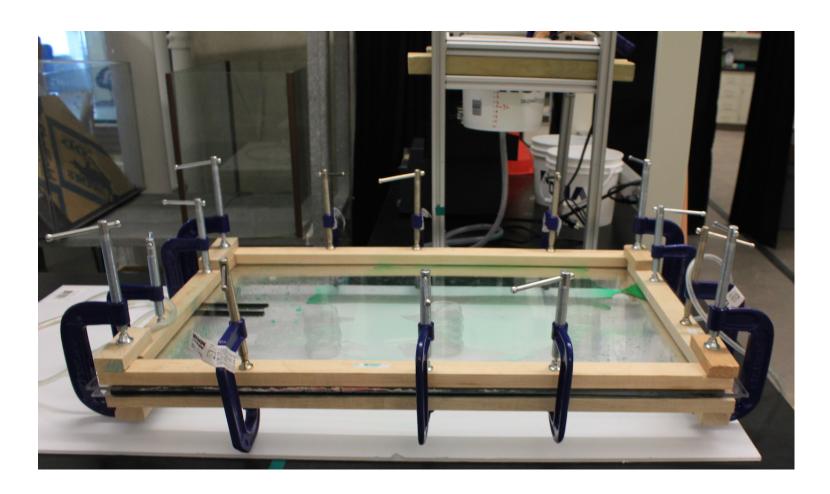
-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



-Physics

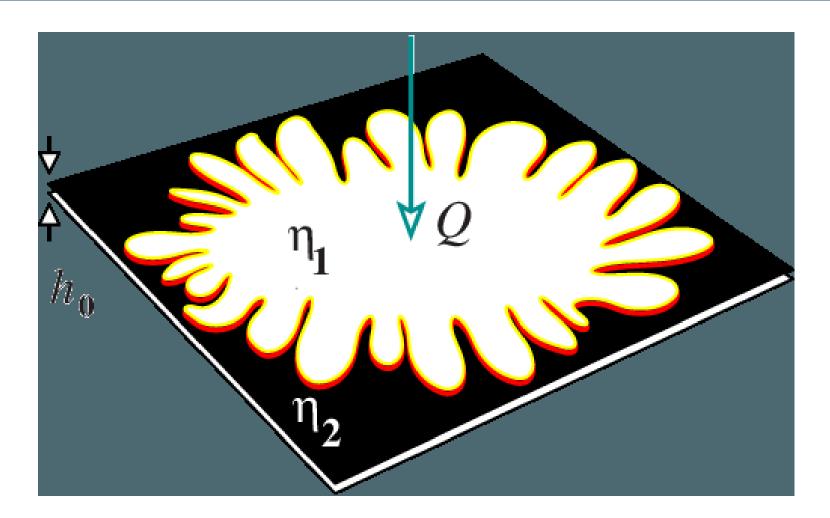
-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



-Physics

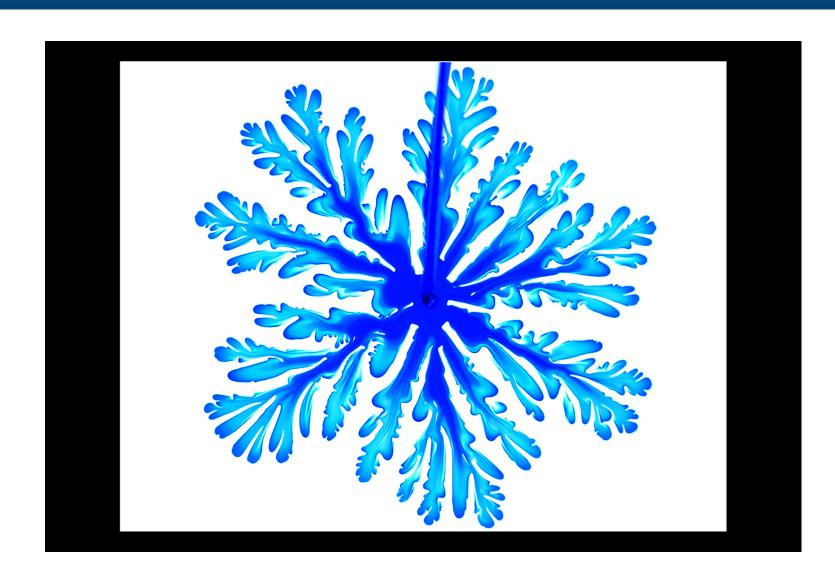
-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



-Physics

-Math

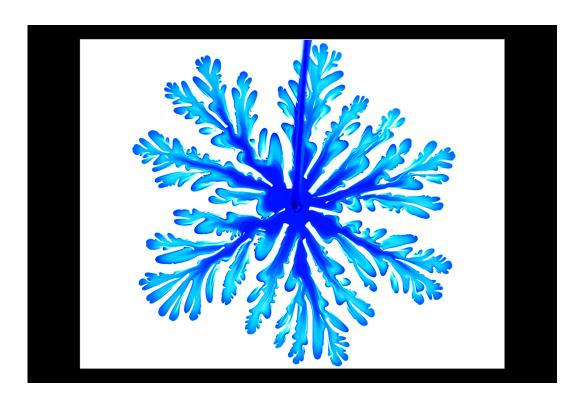
-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary



Box counting (Hausdorff) dimension: D=1.71...

-Physics

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

Mathematics of Laplacian Growth

D'Arcy/Pouiseuille law

-Physics

-Math

-D'Arcy

- -Laplacian Growth
- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

Outside the drop there exists a highly viscous fluid

D'Arcy/Pouiseuille law

-Physics

-Math

-D'Arcy

- -Laplacian Growth
- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

 Outside the drop there exists a highly viscous fluid ⇒ Poiseuille's law dictates that velocity is proportional to pressure gradients.

D'Arcy/Pouiseuille law

-Physics

-Math

-D'Arcy

- -Laplacian Growth
- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

 Outside the drop there exists a highly viscous fluid ⇒ Poiseuille's law dictates that velocity is proportional to pressure gradients.

$$b^2 \vec{v} = -\frac{b^4}{12\eta} \vec{\nabla} P$$

- This is called D'Arcy's law
- The low viscosity of the fliuid in the droplet does not support pressure gradients ⇒ Pressure is constant inside the droplet.

-Physics

-Math

-D'Arcy

-Laplacian Growth

- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

• Incompresibility dictates $(\vec{\nabla} \cdot \vec{v} = 0)$:

$$0 = \nabla^2 P$$

-Physics

-Math

-D'Arcy

-Laplacian Growth

- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

• Incompresibility dictates $(\vec{\nabla} \cdot \vec{v} = 0)$:

$$0 = \nabla^2 P$$

On the boundary (without loss of generality):

$$P = 0$$

-Physics

-Math

-D'Arcy

-Laplacian Growth

- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

• Incompresibility dictates $(\vec{\nabla} \cdot \vec{v} = 0)$:

$$0 = \nabla^2 P$$

On the boundary (without loss of generality):

$$P = 0$$

• The edge of the droplet moves according to:

$$v_n = \frac{b^2}{12\mu} \partial_n P$$

• At infinity: $P \sim Q \log(r)$

-Physics

-Math

-D'Arcy

-Laplacian Growth

- -Fundamental Properties
- -Integrability
- -Special Features
- -Dispersive Regula.
- -Remaining Issues

-qKDV

-Summary

• Incompresibility dictates $(\vec{\nabla} \cdot \vec{v} = 0)$:

$$0 = \nabla^2 P$$

On the boundary (without loss of generality):

$$P = 0$$

• The edge of the droplet moves according to:

$$v_n = \frac{b^2}{12\mu} \partial_n P$$

- At infinity: $P \sim Q \log(r)$
- This Defines Laplacian Growth.

-Physics

-Math

-D'Arcy

-Laplacian Growth

-Fundamental Properties

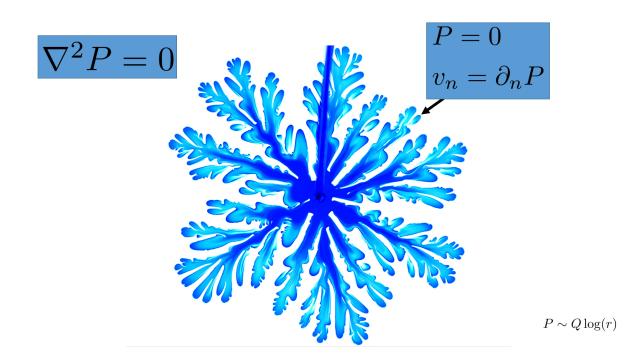
-Integrability

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



-Physics

-Math

-D'Arcy

-Laplacian Growth

-Fundamental Properties

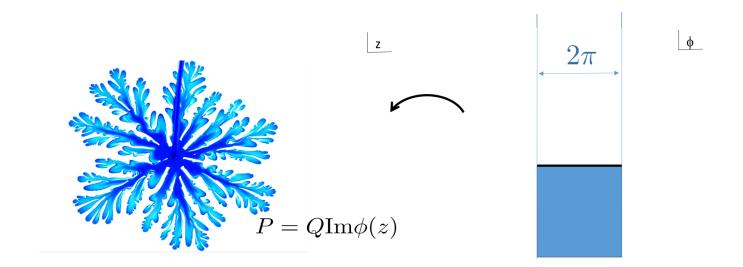
-Integrability

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



-Physics

-Math

-D'Arcy

-Laplacian Growth

-Fundamental Properties

-Integrability

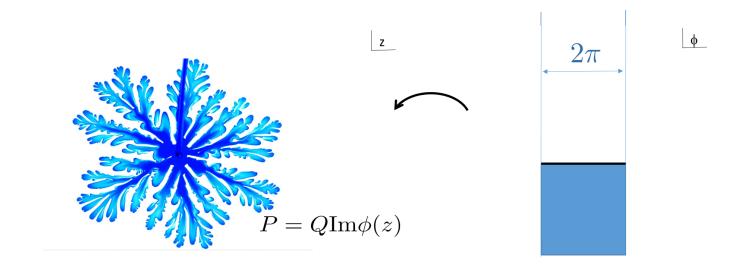
-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary



Particular examples solved analytically

-Physics

-Math

-D'Arcy

-Laplacian Growth

-Fundamental Properties

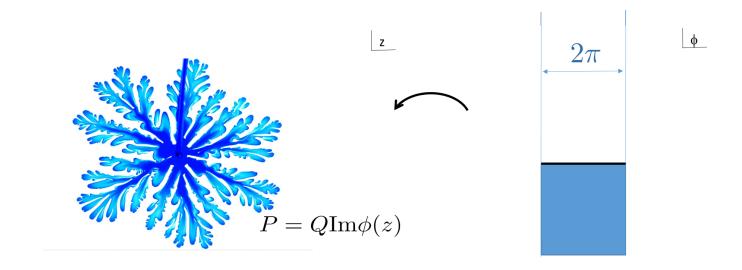
-Integrability

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



- Particular examples solved analytically
- Or general initial value problem numerically

-Physics

-Math

 $\hbox{-} D'Arcy$

-Laplacian Growth

-Fundamental Properties

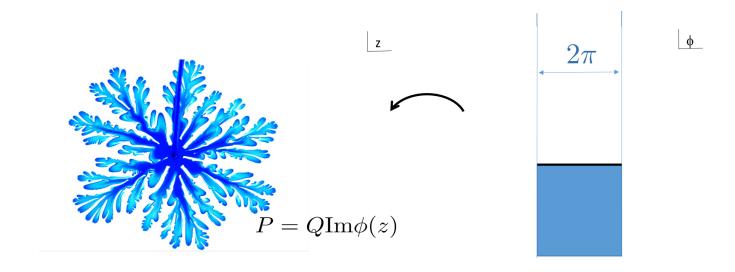
-Integrability

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



- Particular examples solved analytically
- Or general initial value problem numerically
- An infinite number of conserved Harmonic moments [Richardson]

-Physics

-Math

-D'Arcy

-Laplacian Growth

-Fundamental Properties

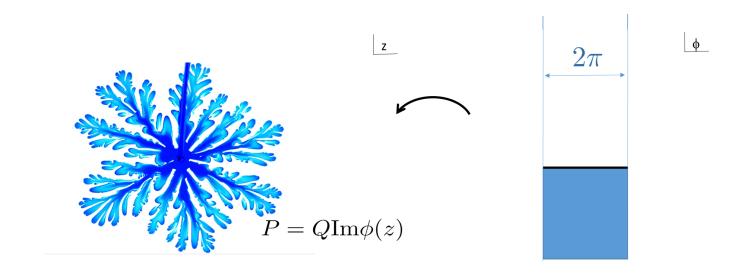
-Integrability

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV



- Particular examples solved analytically
- Or general initial value problem numerically
- An infinite number of conserved Harmonic moments [Richardson]

$$t_n = \iint\limits_{\mathrm{exterior}} z^{-k} d^2z$$
, and c.c.,

-Physics

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

-Integrability

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

Conserved quantities suggests integrability:

-	Р	h١	/SI	ICS

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

- Conserved quantities suggests integrability: Wiegmann, Krichever, Mineev-Weinstein, Zabrodin [2000,2004]
- $z(\phi, t)$ is the dynamical variable

IVS	ICS
	iys

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

- Conserved quantities suggests integrability: Wiegmann, Krichever, Mineev-Weinstein, Zabrodin [2000,2004]
- $z(\phi, t)$ is the dynamical variable
- Poisson structure: $\{\phi, t\} = 1$

- -Physics
- -Math
- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

- Conserved quantities suggests integrability: Wiegmann, Krichever, Mineev-Weinstein, Zabrodin [2000,2004]
- $z(\phi, t)$ is the dynamical variable
- Poisson structure: $\{\phi, t\} = 1$
- $H_k = z_+^k(\phi,t)$ where, $H_0 = \phi$ and

$$z_{+}^{k}(\phi, t) = e^{ik\phi} a_{0}^{(k)}(\mathbf{t}) + e^{i(k-1)\phi} a_{1}^{(k)}(\mathbf{t}) + \cdots + a_{k}^{(k)}(\mathbf{t}) + a_{k+1}^{(k)}(\mathbf{t})e^{-ik\phi} + \cdots$$

-Physics

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

- Conserved quantities suggests integrability: Wiegmann, Krichever, Mineev-Weinstein, Zabrodin [2000,2004]
- $z(\phi, t)$ is the dynamical variable
- Poisson structure: $\{\phi, t\} = 1$
- $H_k = z_+^k(\phi, t)$ where, $H_0 = \phi$ and

$$z_{+}^{k}(\phi, t) = e^{ik\phi} a_{0}^{(k)}(\mathbf{t}) + e^{i(k-1)\phi} a_{1}^{(k)}(\mathbf{t}) + \cdots + a_{k}^{(k)}(\mathbf{t}) + a_{k+1}^{(k)}(\mathbf{t}) e^{-ik\phi} + \dots$$

•
$$\frac{\partial z}{\partial t_k}=\{z,H_k\}$$
, and $\{\frac{\partial}{t_k}-H_k,\frac{\partial}{\partial t_l}-H_l\}=0$

-Physics

-Math

- -D'Arcy
- -Laplacian Growth
- -Fundamental Properties

- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- -Summary

- Conserved quantities suggests integrability: Wiegmann, Krichever, Mineev-Weinstein, Zabrodin [2000,2004]
- $z(\phi, t)$ is the dynamical variable
- Poisson structure: $\{\phi, t\} = 1$
- $H_k = z_+^k(\phi, t)$ where, $H_0 = \phi$ and

$$z_{+}^{k}(\phi, t) = e^{ik\phi} a_{0}^{(k)}(\mathbf{t}) + e^{i(k-1)\phi} a_{1}^{(k)}(\mathbf{t}) + \cdots + a_{k}^{(k)}(\mathbf{t}) + a_{k+1}^{(k)}(\mathbf{t})e^{-ik\phi} + \cdots$$

- $\frac{\partial z}{\partial t_k} = \{z, H_k\}$, and $\{\frac{\partial}{t_k} H_k, \frac{\partial}{\partial t_l} H_l\} = 0$
- Main Eq. is a constraint: $\{z, \bar{z}\} = 1$

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

Special Feature of Laplacian Growth

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

Until now I reviewed how Laplacian Growth fits into general scheme of integrable systems but

The problem is ill-defined without regularization

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

- The problem is ill-defined without regularization
- The integrable structure is a dispersionless limit of another integrable system

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

- The problem is ill-defined without regularization
- The integrable structure is a dispersionless limit of another integrable system
- We are interested in the statistics of solutions initial value problem arguably less interesting.

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

- The problem is ill-defined without regularization
- The integrable structure is a dispersionless limit of another integrable system
- We are interested in the statistics of solutions initial value problem arguably less interesting.
- Hence we may is search for a quantum integrable problem for which Laplacian growth is a semiclassical approximation

-Physics

-Math

-Special Features

-Dispersive Regula.

- -Whitham Eqs.
- -Whitham in LG
- -Regula. of LG
- -Remaining Issues

 $_{qKDV}$

-Summary

Dispersive Regularization

Dispersive Regularization

-Physics

-Math

-Special Features

- -Dispersive Regula.
- -Whitham Eqs.
- -Whitham in LG
- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

 Often Disersionless limits are ill defined. E.g. in Korteweg de Vries:

$$\dot{u} + uu_x + u_{xxx} = 0$$

Dispersive Regularization

-Physics

-Math

-Special Features

- -Dispersive Regula.
- -Whitham Eqs.
- -Whitham in LG
- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

 Often Disersionless limits are ill defined. E.g. in Korteweg de Vries ⇒ Riemann Eq.:

$$\dot{u} + uu_x + \varepsilon u_{xxx} = 0$$

Dispersive Regularization

-Physics

-Math

-Special Features

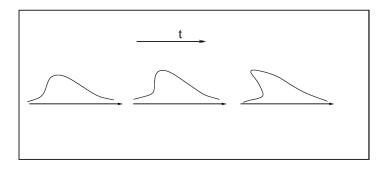
- -Dispersive Regula.
- -Whitham Eqs.
- -Whitham in LG
- -Regula. of LG
- -Remaining Issues

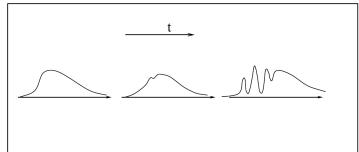
-qKDV

-Summary

 Often Disersionless limits are ill defined. E.g. in Korteweg de Vries ⇒ Riemann Eq.:

$$\dot{u} + uu_x + \varepsilon u_{xxx} = 0$$





Dispersive Regularization

-Physics

-Math

-Special Features

-Dispersive Regula.

- -Whitham Eqs.
- -Whitham in LG
- -Regula. of LG

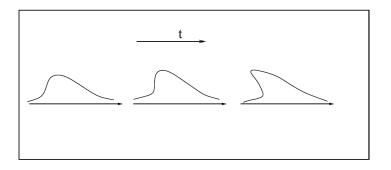
-Remaining Issues

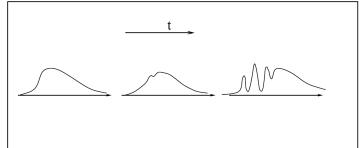
-qKDV

-Summary

 Often Disersionless limits are ill defined. E.g. in Korteweg de Vries ⇒ Riemann Eq.:

$$\dot{u} + uu_x + \varepsilon u_{xxx} = 0$$





• The limit $\varepsilon \to 0$ is well defined, in the sense that we may keep track of the *envelope* of oscillation

Whitham Equations

-Physics

-Math

-Special Features

-Dispersive Regula.

-Whitham Eqs.

- -Whitham in LG
- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

• Given a (multi-)periodic solution, u(x,t), of the KdV we may

Whitham Equations

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.

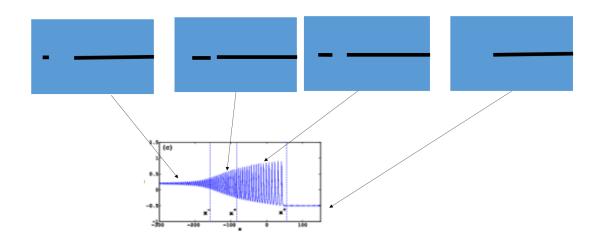
-Whitham Eqs.

- -Whitham in LG
- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

- Given a (multi-)periodic solution, u(x,t), of the KdV we may
- Associate with it the spectrum of the Lax operator

$$H(t) = -\partial_x^2 + u(x, t)$$

Which happens to be multi-gapped



Whitham in Laplacian Growth

-Physics

-Math

-Special Features

-Dispersive Regula.

-Whitham Eqs.

-Whitham in LG

-Regula. of LG

-Remaining Issues

-qKDV

-Summary

 Laplacian Growth is the Whitham modulation equations for the two dimensional Toda Lattice

Whitham in Laplacian Growth

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Whitham Eqs.

-Whitham in LG

- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

- Laplacian Growth is the Whitham modulation equations for the two dimensional Toda Lattice
- The 2DTL is defined by a lax operator, which is a semi-triangular infinte matrix

$$\hat{L} = a_1(t)e^{\partial_t} + a_0(t) + a_{-1}(t)e^{-t} + \dots$$

Whitham in Laplacian Growth

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Whitham Eqs.

-Whitham in LG

- -Regula. of LG
- -Remaining Issues
- -qKDV
- -Summary

- Laplacian Growth is the Whitham modulation equations for the two dimensional Toda Lattice
- The 2DTL is defined by a lax operator, which is a semi-triangular infinte matrix

2DTL	LG
$\hat{L} = a_1 e^{\partial_t} + a_0 + \dots$	$z = a_1 e^{i\phi} + a_0 + \dots$
$[\partial_t, t] = 1$	$\{\varphi, t\} = 1$
$\hat{H}_k = \hat{L}_+^k$	$H_k = z_+^k$
$[\hat{L},\hat{L}^{\dagger}]=1$	$\{z, \bar{z}\} = 1$

Dispersive Regularization of Laplacian Growth

-Physics

-Math

-Special Features

-Dispersive Regula.

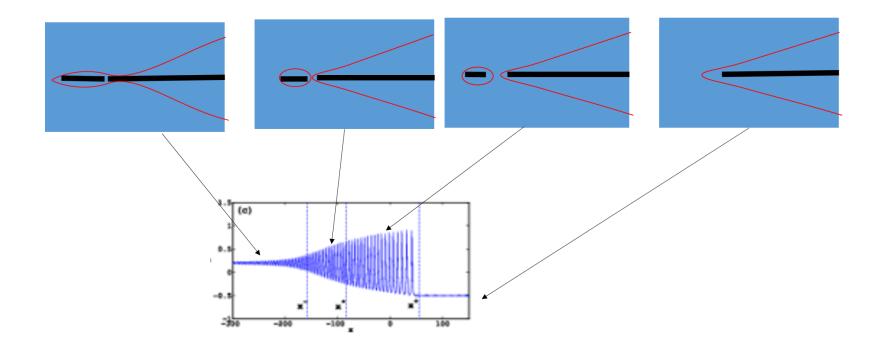
-Whitham Eqs.

-Whitham in LG

-Regula. of LG

-Remaining Issues

-qKDV



Dispersive Regularization of Laplacian Growth

-Physics

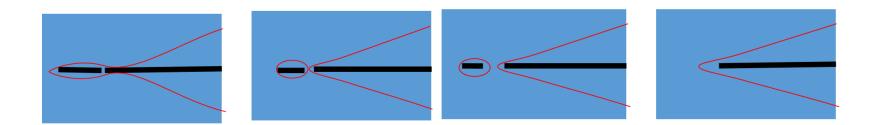
-Math

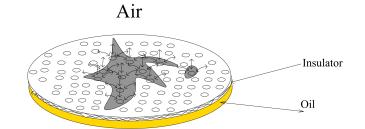
-Special Features

- -Dispersive Regula.
- -Whitham Eqs.
- -Whitham in LG

-Regula. of LG

- -Remaining Issues
- -qKDV
- -Summary





-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-Open Problems

-qKDV

-Summary

Remaning Issues

Some Open Problems and Questions

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-Open Problems

-qKDV

-Summary

We are interested in the statistics of solutions which have a fractal property:

$$A \sim t \sim R^D$$

- Does conformal invariance help? Representation theory of (centrally extended) conformal transformations seems to be only tool to obtain discrete spectrum of scaling dimensions.
- Does integrability help?
- Should we quantize the problem again to obtain statistical mechanics?

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- $-KdV \rightarrow qKdV$
- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

quanum Koreteweg de Vries (qKdV)

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-KdV→qKdV

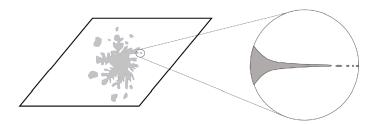
- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

Laplacian Growth has a KdV limit.

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.



- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)
- Quantizing the problem allows to lift

-P	h١	15	ICS
	•••	, –	

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)
- Quantizing the problem allows to lift Classical LG → Statistics of LG

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)
- Quantizing the problem allows to lift Classical LG \longrightarrow Statistics of LG Complex Analysis (KdV) \longrightarrow CFT (qKdV)

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)
- Quantizing the problem allows to lift Classical LG \longrightarrow Statistics of LG Complex Analysis (KdV) \longrightarrow CFT (qKdV)
- Indeed, For $\hat{\Phi}$ a scaling operator, and \mathcal{A} an LG cluster define a probability distribution function:

$$P(\mathcal{A}) = |\langle \mathcal{A} | \Psi \rangle|^2$$

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-KdV→qKdV

- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Laplacian Growth has a KdV limit.
- Namely, the limit of a thin and long finger.
- KdV has an intimate connection to conformal transformations (i.e., Complex Analysis)
- Quantizing the problem allows to lift Classical LG \longrightarrow Statistics of LG Complex Analysis (KdV) \longrightarrow CFT (qKdV)
- Indeed, For Φ a scaling operator, and \mathcal{A} an LG cluster define a probability distribution function:

 $P(\mathcal{A}) = |\langle \mathcal{A} | \Psi \rangle|^2$

 Seems to obey all requirements of an ensemble of growing self-similar cluster

Quantum KdV and the Virasoro Algebra I

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

- -Spectral Expansion
- -Scaling Operators
- -Summary

The KdV problem can be obtained by defining:

$$\{u(x), u(y)\} = 2(u(x) + u(y))\delta'(x - y) + \delta'''(x - y)$$

Quantum KdV and the Virasoro Algebra I

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

- -Spectral Expansion
- -Scaling Operators
- -Summary

The KdV problem can be obtained by defining:

$$\{u(x), u(y)\} = 2(u(x) + u(y))\delta'(x - y) + \delta'''(x - y)$$

• Define the generator of the conformal transformation $f_{\delta}(z) = z + \frac{\delta}{z-z_0}$ as $\hat{T}(z_0)$:

$$\langle \delta \hat{\Phi}(z) \rangle \equiv \langle \hat{\Phi}(f_{\delta}(z)) - \hat{\Phi}(z) \rangle = \langle \hat{T}(z_0) \hat{\Phi}(z) \rangle$$

Quantum KdV and the Virasoro Algebra I

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

- -Spectral Expansion
- -Scaling Operators
- -Summary

The KdV problem can be obtained by defining:

$$\{u(x), u(y)\} = 2(u(x) + u(y))\delta'(x - y) + \delta'''(x - y)$$

• Define the generator of the conformal transformation $f_{\delta}(z) = z + \frac{\delta}{z - z_0}$ as $\hat{T}(z_0)$: $\langle \delta \hat{\Phi}(z) \rangle \equiv \langle \hat{\Phi}(f_{\delta}(z)) - \hat{\Phi}(z) \rangle = \langle \hat{T}(z_0) \hat{\Phi}(z) \rangle$

• The \hat{T} has the following algebra:

$$\begin{aligned} & [\hat{T}(x), \hat{T}(y)] = \\ & 2(\hat{T}(x) + \hat{T}(y))\delta'(x - y) + \frac{\pi c}{6}\delta'''(x - y) \end{aligned}$$

Quantum KdV and the Virasoro Algebra II

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

- -Spectral Expansion
- -Scaling Operators
- -Summary

 A set of commuting Hamiltonians can be defined which are quantization of the KdV Hamiltonians

$$\hat{H}^{1} = \oint \frac{dx}{2\pi} \hat{T}$$

$$\hat{H}^{2} = \oint \frac{dx}{2\pi} : \hat{T}^{2} :$$

$$\hat{H}^{3} = \oint \frac{dx}{2\pi} : \hat{T}^{3} : +\frac{c+2}{12} : \frac{\hat{T}'^{2}}{2} :$$

$$\dots$$

Spectral expansion of operators

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

-Spectral Expansion

-Scaling Operators

-Summary

 Any operator can be expanded by a common eigenstate of the Hamiltonians:

$$\hat{\Phi}(x)|0\rangle = \sum_{\mathcal{A}} |\mathcal{A}\rangle \langle \mathcal{A}|\hat{\Phi}(x)|0\rangle.$$

Spectral expansion of operators

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

-Spectral Expansion

-Scaling Operators

-Summary

 Any operator can be expanded by a common eigenstate of the Hamiltonians:

$$\hat{\Phi}(x)|0\rangle = \sum_{A} |\mathcal{A}\rangle\langle\mathcal{A}|\hat{\Phi}(x)|0\rangle.$$

• The eigenstates are solutions of the Bethe equations, the roots lie in the semiclassical limit along the jump in the spectral curve

Spectral expansion of operators

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

-Spectral Expansion

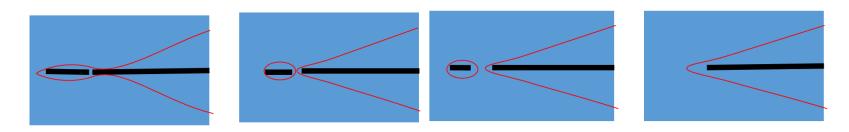
-Scaling Operators

-Summary

 Any operator can be expanded by a common eigenstate of the Hamiltonians:

$$\hat{\Phi}(x)|0\rangle = \sum_{\mathcal{A}} |\mathcal{A}\rangle \langle \mathcal{A}|\hat{\Phi}(x)|0\rangle.$$

 The eigenstates are solutions of the Bethe equations, the roots lie in the semiclassical limit along the jump in the spectral curve



-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- $-KdV \rightarrow gKdV$
- -qKDV and Virasoro
- -Spectral Expansion

-Scaling Operators

-Summary

Scaling operators have the property:

$$\hat{\Phi}(\alpha x) = \alpha^{-h} \hat{\Phi}(x)$$

- -Physics
- -Math
- -Special Features
- -Dispersive Regula.
- -Remaining Issues
- -qKDV
- $-KdV \rightarrow qKdV$
- -qKDV and Virasoro
- -Spectral Expansion
- -Scaling Operators
- -Summary

- Scaling operators have the property:
 - $\hat{\Phi}(\alpha x) = \alpha^{-h} \hat{\Phi}(x)$
- One may wonder how and whether the scaling behavior of the operator carries over to the spectral expansion of that operator.

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- $-KdV \rightarrow qKdV$
- -qKDV and Virasoro
- -Spectral Expansion

-Scaling Operators

-Summary

• Scaling operators have the property: $\hat{x} = -h \hat{x}$

$$\hat{\Phi}(\alpha x) = \alpha^{-h} \hat{\Phi}(x)$$

- One may wonder how and whether the scaling behavior of the operator carries over to the spectral expansion of that operator.
- It may be argued:

$$|\langle \mathcal{A}|\hat{\Phi}(0)|0\rangle|^2 \equiv P(\mathcal{A}) \sim R(\mathcal{A})^h$$
, $P(\mathcal{A}^{\Delta t}) = P(\mathcal{A})$.

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

 $-KdV \rightarrow qKdV$

-qKDV and Virasoro

-Spectral Expansion

-Scaling Operators

- Scaling operators have the property: $\hat{\Phi}(\alpha x) = \alpha^{-h} \hat{\Phi}(x)$
- One may wonder how and whether the scaling behavior of the operator carries over to the spectral expansion of that operator.
- It may be argued: $|\langle \mathcal{A} | \hat{\Phi}(0) | 0 \rangle|^2 \equiv P(\mathcal{A}) \sim R(\mathcal{A})^h,$ $P(\mathcal{A}^{\Delta t}) = P(\mathcal{A}).$
- Namely, this probabilty distribtuion describes an ensemble of growing fractal clusters with fractal dimension with fractal dimension D.

-Physics

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

-Physics -Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

-Summary

 Laplacian growth is the Dispersionless Limit of the two dimensional Toda Equation.

-	<u>۲</u>	h	y:	SI	C	S

-Math

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- Laplacian growth is the Dispersionless Limit of the two dimensional Toda Equation.
- In a certain limit that is the KdV equation

-Physics
-Math
-Special Features
-Dispersive Regula.
-Remaining Issues

-qKDV

- Laplacian growth is the Dispersionless Limit of the two dimensional Toda Equation.
- In a certain limit that is the KdV equation
- The KdV equation may be quantized thus leading putatively to

-	PI	ny:	SIC	S
_	M	at	h	

-Special Features

-Dispersive Regula.

-Remaining Issues

-qKDV

- Laplacian growth is the Dispersionless Limit of the two dimensional Toda Equation.
- In a certain limit that is the KdV equation
- The KdV equation may be quantized thus leading putatively to
- A statistical mechanics description of Laplcian growth with a discrete spectrum of fractal dimensions.