Geometry of Surface group representations

Mahan Mj,
School of Mathematics,
Tata Institute of Fundamental Research.

Theorem (Riemann 1851, Moebius 1863, Jordan 1866, Poincaré 1882, Klein 1882): Any closed orientable surface is homeomorphic to a sphere with g handles for some non-negative integer g.

g =genus.

Proof: Dehn and Heegaard (1907).

Theorem (Riemann 1851, Moebius 1863, Jordan 1866, Poincaré 1882, Klein 1882): Any closed orientable surface is

Theorem (Riemann 1851, Moebius 1863, Jordan 1866, Poincaré 1882, Klein 1882): Any closed orientable surface is homeomorphic to a sphere with g handles for some non-negative integer g.

g = genus.

Proof: Dehn and Heegaard (1907).

Theorem (Riemann 1851, Moebius 1863, Jordan 1866, Poincaré 1882, Klein 1882): Any closed orientable surface is homeomorphic to a sphere with g handles for some non-negative integer g.

g = genus.

Proof: Dehn and Heegaard (1907).

- Differential Geometry: Constant curvature metrics: +1t(g = 0), 0 (g = 1), -1 (g ≥ 2).
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations:
 Varieties in $\mathbb{C}P^n$.

- **①** Differential Geometry: Constant curvature metrics: +1 (g=0), 0 (g=1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

- **①** Differential Geometry: Constant curvature metrics: +1 (g=0), 0 (g=1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in CPⁿ.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in CPⁿ.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in CPⁿ.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- 2 Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- Algebraic Geometry: Solution sets to algebraic equations.
 Varieties in CPⁿ.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

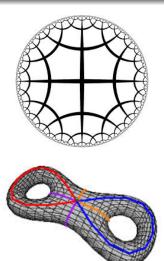
- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

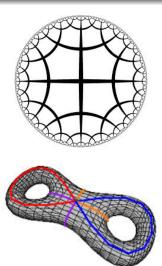
- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.

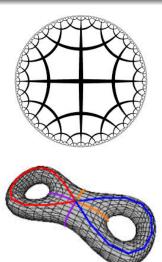
- ① Differential Geometry: Constant curvature metrics: +1 (g = 0), 0 (g = 1), -1 $(g \ge 2)$.
- Complex Geometry: Riemann surfaces: transition functions complex analytic.
- **3** Algebraic Geometry: Solution sets to algebraic equations: Varieties in $\mathbb{C}P^n$.



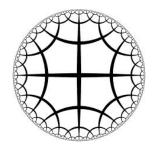
$$ho:\pi_1(S) o PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}=Isom_+^+(\mathbb{H}^2)$$

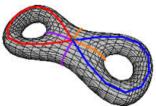


 $ho:\pi_1(S) o PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}=Isom_{\bullet,\bullet}^+(H^2)$

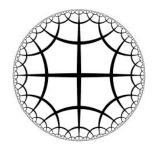


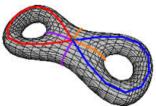
 $ho:\pi_1(S) o PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}=Isom_{\bullet,\bullet}^+(H^2)$





$$\rho:\pi_1(S) o PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}=Isom^+(\mathbf{H}^2).$$





$$\rho:\pi_1(S) o PSL(2,\mathbb{R})=SL(2,\mathbb{R})/\{\pm I\}=Isom^+(\mathbf{H}^2).$$

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations ρ: π₁(S) → PSL(2,ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2,ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations ρ: π₁(S) → PSL(2, ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2, ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations ρ: π₁(S) → PSL(2, ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2, ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations ρ: π₁(S) → PSL(2, ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2, ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations ρ: π₁(S) → PSL(2, ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2, ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations
 ρ: π₁(S) → PSL(2,ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2,ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- Representations: Discrete faithful representations
 ρ: π₁(S) → PSL(2,ℝ)/ ~, where ~ means "up to (global) conjugation by an element of PSL(2,ℝ)".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- **4** Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- **4** Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

- Differential Geometry: Isometry classes of constant curvature -1 metrics with topological marking.
- Complex Geometry: Conformal/complex analytic isomorphism classes of Riemann surfaces with topological marking.
- Algebraic Geometry: Moduli space: Smooth projective algebraic curves up to (algebraic) isomorphism.
- **③** Representations: Discrete faithful representations $\rho: \pi_1(S) \to PSL(2,\mathbb{R})/\sim$, where \sim means "up to (global) conjugation by an element of $PSL(2,\mathbb{R})$ ".

$$\textit{PSL}(2,\mathbb{C}) = \textit{Isom}^+(\mathbf{H}^3)$$

Theorem

(Thurston-Bonahon): $M = H^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

(Thurston-Bonahon): $M = H^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

Look at space of discrete faithful $\rho:\pi_1(S)\to PSL(2,\mathbb{C})$ equipped with the usual (algebraic) topology of (pointwise) convergence. Denote as AH(S) – analog of Teichmüller space.

Let $\Gamma = \rho(\pi_1(S))$ – Kleinian surface group.

(Thurston-Bonahon): $M = H^{s}/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

(Thurston-Bonahon): $M = H^{\circ}/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

Theorem

(Thurston-Bonahon): $M = \mathbf{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

Theorem

(Thurston-Bonahon): $M = \mathbf{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

Theorem

(Thurston-Bonahon): $M = \mathbf{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

$$PSL(2,\mathbb{C}) = Isom^+(\mathbf{H}^3)$$

Theorem

(Thurston-Bonahon): $M = \mathbf{H}^3/\Gamma$ is homeomorphic to a product $S \times \mathbb{R}$.

Let $i: S \rightarrow M$ be a homotopy equivalence (embeddding),

 $o \in \mathbf{H}^2 = \tilde{S}$ be a base-point, $\tilde{i} : \mathbf{H}^2 \to \mathbf{H}^3$ be a lift i, and $\tilde{i}(o) = O$.

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem. 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Gonvex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem. 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem. 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H² (denote d₂) and H³ (denote d₃) are linearly comparable: There exist (k, ε) such that
 ½ d₂(g.o, h.o) ε ≤ d₃(ρ(g).O, ρ(h).O) ≤ k d₂(g.o, h.o) + ε.
 QF(S) = Teich(S) × Teich(S) (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded:
 Distances in H² (denote d₂) and H³ (denote d₃) are linearly comparable: There exist (k, ε) such that
 ½ d₂(g.o, h.o) ε ≤ d₃(ρ(g).O, ρ(h).O) ≤ k d₂(g.o, h.o) + ε.
 QF(S) = Teich(S) × Teich(S) (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- 2 Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- 2 Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

- Quasi-Fuchsian/ Convex cocompact/ undistorted/ quasi-isometrically (qi) embedded: Distances in \mathbf{H}^2 (denote d_2) and \mathbf{H}^3 (denote d_3) are linearly comparable: There exist (k,ϵ) such that $\frac{1}{k} d_2(g.o,h.o) \epsilon \leq d_3(\rho(g).O,\rho(h).O) \leq k d_2(g.o,h.o) + \epsilon.$ $QF(S) = Teich(S) \times Teich(S)$ (Bers' simultaneous uniformization theorem, 1960)
- Limits of these in the algebraic topology. (Bers' density conjecture proved by Brock-Canary-Minsky, 2012)

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2 = PSL(2, \mathbb{C})/B_{\mathbb{C}}, B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $i: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which

 $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2, \mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2 = PSL(2, \mathbb{C})/B_{\mathbb{C}}, B_{\mathbb{C}} = \text{upper triangular complex matrices}$ (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding**

$$\partial i: S^1 \to S^2$$
.

Note that $S^1=PSL(2,\mathbb{R})/B_{\mathbb{R}},\,B_{\mathbb{R}}=$ upper triangular real matrices (det. 1)

 $S^2=PSL(2,\mathbb{C})/B_\mathbb{C},\,B_\mathbb{C}=$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1) $S^2 = PSL(2,\mathbb{C})/B_{\mathbb{C}}$, $B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theoren

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: \mathcal{S}^1 \to \mathcal{S}^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1) $S^2 = PSL(2,\mathbb{C})/B_{\mathbb{C}}$, $B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theorer

(M–): For all representations in AH(S), $i: \mathbb{H}^2 \to \mathbb{H}^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2=PSL(2,\mathbb{C})/B_\mathbb{C},\,B_\mathbb{C}=$ upper triangular complex matrices (det. 1)

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2=PSL(2,\mathbb{C})/B_{\mathbb{C}},\,B_{\mathbb{C}}=$ upper triangular complex matrices (det. 1)

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2 = PSL(2,\mathbb{C})/B_{\mathbb{C}}, B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2 = PSL(2,\mathbb{C})/B_{\mathbb{C}}, B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: H^2 \to H^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Alternate asymptotic viewpoint:

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2, \mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2=PSL(2,\mathbb{C})/B_\mathbb{C},\,B_\mathbb{C}=$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurston maps.

Alternate asymptotic viewpoint:

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2,\mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2=PSL(2,\mathbb{C})/B_\mathbb{C},\,B_\mathbb{C}=$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurstor maps.

Alternate asymptotic viewpoint:

Quasi-Fuchsian representations are precisely those for which $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a **continuous embedding** $\partial i: S^1 \to S^2$.

Note that $S^1 = PSL(2, \mathbb{R})/B_{\mathbb{R}}$, $B_{\mathbb{R}} =$ upper triangular real matrices (det. 1)

 $S^2 = PSL(2,\mathbb{C})/B_{\mathbb{C}}, B_{\mathbb{C}} =$ upper triangular complex matrices (det. 1)

Theorem

(M–): For all representations in AH(S), $\tilde{i}: \mathbf{H}^2 \to \mathbf{H}^3$ extends to a continuous map $\partial i: S^1 \to S^2$

Such continuous maps are in general called Cannon-Thurston maps.

Other non-compact semisimple Lie groups G: Higher

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles Anosov representations: Labourie (2005) Alternate approach (Kapovich-Leeb-Porti) (Gueritaud-

Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles: Anosov representations: Labourie (2005) Alternate approach (Kapovich-Leeb-Porti) (Gueritaud-

Theorem

(KLP, GGKW:) TFAE:

1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,

- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles: Anosov representations: Labourie (2005) Alternate approach (Kapovich-Leeb-Porti) (Gueritaud-

Theorem

(KLP, GGKW:) TFAE:

1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,

- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

```
Anosov representations: Labourie (2005)
Alternate approach
(Kapovich-Leeb-Porti) (Gueritaud-
```

```
(KLP. GGKW:) TFAE
```

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-

```
(KLP, GGKW:) TFAE
```

- 1) Representation $\Gamma=
 ho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles: Anosov representations: Labourie (2005)

```
Alternate approach (Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):
```

- (KLP, GGKW:) TFAE
- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles: Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-

- (KLP, GGKW:) TFAE
- 1) Representation $\Gamma=
 ho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $extstyle{ iny G}/ extstyle{ iny G}/ extstyle{ iny K}$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i:S^1 o G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O\subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i : S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i: S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i: S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i: S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles: Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-

Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i: S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i : S^1 \to G/B$ plus antipodal.

Dynamical study in terms of action of $\rho(\pi_1(S))$ on G/B (Furstenberg boundary) and associated vector bundles:

Anosov representations: Labourie (2005)

Alternate approach

(Kapovich-Leeb-Porti) (Gueritaud-Guichard-Kassel-Wienhard) (2015–):

Theorem

- 1) Representation $\Gamma = \rho(\pi_1(S))$ is Anosov,
- 2) qi-embedded orbits $\Gamma.O \subset G/K$ (the associated symmetric space) in a strong sense,
- 3) Asymptotic embedding: $\partial i: S^1 \to G/B$ plus antipodal.

Questions

- Other (non-discrete, non-faithful) representations. Geometric understanding? Goldman's work
- Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

- Algebraic geometry: vector bundles with Higgs field;
- Differential geometry: Harmonic π₁(S)—equivariant maps S
 → G/K;
- **Output** Topology/representations $\rho: \pi_1(S) \to G$

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in
- What if asymptotic embedding $\partial i: S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston)
 - map $\partial i: S^1 \to G/B$?

- Algebraic geometry: vector bundles with Higgs field;
- Differential geometry: Harmonic $\pi_1(S)$ equivariant maps $\widetilde{S} \to G/K$:
- **O** Topology/representations $\rho: \pi_1(S) \to G$.

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in
- What if asymptotic embedding $\partial i: S^1 \to G/B$ is replaced by requiring only a continuous (higher Cannon-Thurston)
 - map $\partial i: S^1 \to G/B$?

- Algebraic geometry: vector bundles with Higgs field;
- Differential geometry: Harmonic $\pi_1(S)$ equivariant maps $\widetilde{S} \to G/K$:
- **O** Topology/representations $\rho: \pi_1(S) \to G$.

Questions

• Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- 2 Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- ② Analog of elements of limiting representations in AH(S) \ QF(S)?

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- 2 Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- 2 Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- 2 Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Unifying framework-Higgs bundles

(Hitchin-Simpson-Corlette-Donaldson)

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Unifying framework—Higgs bundles (Hitchin-Simpson-Corlette-Donaldson):

Algebraic geometry: vector bundles with Higgs field;

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

Unifying framework—Higgs bundles (Hitchin-Simpson-Corlette-Donaldson):

Algebraic geometry: vector bundles with Higgs field;

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- ② Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

- Algebraic geometry: vector bundles with Higgs field;
- ② Differential geometry: Harmonic $\pi_1(S)$ -equivariant maps $\widetilde{S} \to G/K$;

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- Analog of elements of limiting representations in AH(S) \ QF(S)?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

- Algebraic geometry: vector bundles with Higgs field;
- ② Differential geometry: Harmonic $\pi_1(S)$ -equivariant maps $\widetilde{S} \to G/K$;

Questions

- Other (non-discrete, non-faithful) representations: Geometric understanding? Goldman's work
- 2 Analog of elements of limiting representations in $AH(S) \setminus QF(S)$?
- What if asymptotic embedding ∂i : S¹ → G/B is replaced by requiring only a continuous (higher Cannon-Thurston?) map ∂i : S¹ → G/B?

- Algebraic geometry: vector bundles with Higgs field;
- ② Differential geometry: Harmonic $\pi_1(S)$ -equivariant maps $\widetilde{S} \to G/K$;
- **3** Topology/representations $\rho : \pi_1(S) \to G$.

