“Curved spacetime tells matter how to move”

Continuous matter, stress energy tensor
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“Matter tells spacetime how to curve”
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Landau-Lifshitz Formulation of 6R

Post-Newtonian and post-Minkowskian theory start with the Landau-Lifshitz
formulation

Define the "gothic" metric density go‘ﬁ = \/—ggo‘ﬁ

Then Einstein's equations can be written in the form
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Antisymmetry of H*8v implies the conservation equation
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Landau-Lifshitz Formulation of 6R

The Landau-Lifshitz pseudotensor
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Landau-Lifshitz Formulation of 6R

Conservation equation allows the formulation of global conservation laws:
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Similar conservation laws for linear momentum, angular momentum, and
motion of a center of mass, with
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The “relaxed” Einstein equations

ha,B — 77045 S gozﬁ

Define potentials

Impose a coordinate condition (gauge): Harmonic or deDonder gauge
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Still equivalent to the exact Einstein equations
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The "relaxed” Einstein equations
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Solve for h as a
functional of matter
variables

Solve for evolution of
matter variables to
give h(t,x)




Iterating the “Relaxed” Einstein Equations

Assume that h®® is "small”, and iterate the relaxed equation:
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Start with hy = 0 and truncate at a desired N

Yields an expansion in powers of G, called a post-Minkowskian expansion

Find the motion of matter using
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Solving the "Relaxed” Einstein Equations
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Solving the “"Relaxed” Einstein Equations:

Far zone

Near zone integral: w N
For x » x', Taylor expand |x-x'|

A multipole expansion
T=t— R/c

Integrals depend on R




Solving the "Relaxed” Einstein Equations:
Far zone
Far zone integral: (LY,

Since contributions o W in the far zone come from retarded fields, they
have the generic form
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Change variables from (r', 6", ¢’ )
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Solving the “Relaxed” Einstein Equations:
Far zone

Far zone integral: @DW
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Integral also depends on R

But ?ﬂ S ¢ N T+ ww is independent of R




Gravity as a source of gravity
and gravitational “tails”




Solving the “"Relaxed” Einstein Equations:

Near zone

Near zone integral: w N
For x ~ x', Taylor expand about t
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« A post-Newtonian expansion %
in powers of 1/c

« Instantaneous potentials

* Must also calculate the far-zone
integral ww




Post-Newtonian approximation: Near zone

Newtonian plus rand h9 in the near zone:
corrections up to 1PN

2.5 PN order No 0.5 PN term: correction
within T conservation of M d2X/dt2

Pure function of
time - a coordinate

effect
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