
Continuous matter, stress energy tensor 

Perfect fluid: 

1st law of Thermodynamics 

Relativistic Euler equation 

Compare with Newton 

AþCurved spacetime tells matter how to moveAÿ 
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"   = energy density 
p  = pressure 
u# = four velocity

T!" = ( !c 2 + " + p)u! u" /c 2 + pg!"

j ! = !u !

! ! T
"! = 0 , ! " j

" = 0

u! ! " T !" = 0 =
d!
d"

+ (! + p)! á #u d("V) + pdV = 0

(µ + p)
Du !

d!
= ! c2

�
g!" + u! u" /c 2

�
" " p

!
dv
dt

! ! U = ! ! p



AþMatter tells spacetime how to curveAÿ 

EinsteinAûs equations:  

Riemann tensor 

Ricci tensor 

Ricci scalar 

Einstein tensor 

Bianchi identities 

Action 
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Landau-Lifshitz Formulation of GR 
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Post-Newtonian and post-Minkowskian theory start with the Landau-Lifshitz  
formulation 

Define the “gothic” metric density 

Then Einstein’s equations can be written in the form 

Antisymmetry of H#µ$% implies the conservation equation

() r�T↵� = 0
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The Landau-Lifshitz pseudotensor 

Landau-Lifshitz Formulation of GR 



Landau-Lifshitz Formulation of GR 
Conservation equation allows the formulation of global conservation laws: 
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Similar conservation laws for linear momentum, angular momentum, and  
motion of a center of mass, with 
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The “relaxed” Einstein equations 
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Define potentials 

Impose a coordinate condition (gauge): Harmonic or deDonder gauge 

Still equivalent to the exact Einstein equations 

Matter tells 
spacetime 
how to curve 

Spacetime 
tells matter 
how to move 
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Solve for h as a 
functional of matter 
variables 

Solve for evolution of 
matter variables to 
give h(t,x) 

The “relaxed” Einstein equations 



Iterating the “Relaxed” Einstein Equations 
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Assume that h#$ is “small”, and iterate the relaxed equation: 

Start with h0 = 0 and truncate at a desired N 

Yields an expansion in powers of G, called a post-Minkowskian expansion 

Find the motion of matter using 
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Solving the “Relaxed” Einstein Equations 

N : r ! < R ,

W : r ! > R

R ! wavelength

! s/v

 =  N +  W

!  = ! 4⇡µ =" ! =

Z

C

µ(t ! | x ! x

! |/c, x! )

|x ! x

! |
d3x!



Solving the “Relaxed” Einstein Equations: 
Far zone 
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For x >> x’, Taylor expand |x-x’| 

A multipole expansion 

Near zone integral: 

! = t ! R/c

! N

Integrals depend on R



Solving the “Relaxed” Einstein Equations: 
Far zone 

Far zone integral:  W

Since contributions to µ in the far zone come from retarded fields, they 
have the generic form 

µ ! f (! ! , " ! , #!)/r !n

Change variables from (r’, &Aû, ' Aû)  
to (u’, &Aû, ' Aû), where u’ = c( ’ = ct’-r’ 
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Solving the “Relaxed” Einstein Equations: 
Far zone 

Far zone integral:  W

Integral also depends on R

But   =  N +  W is independent of R
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Gravity as a source of gravity  
and gravitational “tails” 



Solving the “Relaxed” Einstein Equations: 
Near zone 

For x ~ x’, Taylor expand about t 

•  A post-Newtonian expansion 
in powers of 1/c 

•  Instantaneous potentials 
•  Must also calculate the far-zone 

integral   
 

Near zone integral: ! N
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Illustration: expand h00 in the near zone: Newtonian plus 
corrections up to 
2.5 PN order 
within (00 

No 0.5 PN term:  
conservation of M 

1 PN 
correction 
d2X/dt2 

Pure function of 
time – a coordinate 
effect  

2 PN term 

2.5 PN 
term 

h00
N =

4G
c4

⇢Z

M

! 00

|x ! x ! |
d3x! +

1

2c2
" 2

"t 2

Z

M
! 00|x ! x ! | d3x!

!
1

6c3
" 3

"t 3

Z

M
! 00|x ! x ! |2 d3x! +

1

24c4
" 4

"t 4

Z

M
! 00|x ! x ! |3 d3x!

!
1

120c5
" 5

"t 5

Z

M
! 00|x ! x ! |4 d3x!

i
+ O(c" 6)

�

Post-Newtonian approximation: Near zone 
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