Motion of extended fluid bodies

Main assumptions:

- Bodies small compared to typical separation ($R \ll r$)
- "isolated" -- no mass flow
- $T_{\text {int }} \sim\left(R^{3} / G m\right)^{1 / 2} \ll T_{\text {orb }} \sim\left(r^{3} / G m\right)^{1 / 2}$-- quasi equilibrium
- adiabatic response to tidal deformations -- nearly spherical

External problem:

- determine motions of bodies as functions (or functionals) of internal parameters
Internal problem:
- given motions, determine evolution of internal parameters Solve the two problems self=consistently or iteratively

Example: Earth-Moon system -- orbital motion raises tides, tidally deformed fields affect motions

Motion of extended fluid bodies

Basic definitions

$$
\begin{aligned}
m_{A} & :=\int_{A} \rho(t, \boldsymbol{x}) d^{3} x \\
\boldsymbol{r}_{A}(t) & :=\frac{1}{m_{A}} \int_{A} \rho(t, \boldsymbol{x}) \boldsymbol{x} d^{3} x
\end{aligned}
$$

$$
\begin{gathered}
d m_{A} / d t=0 \\
\boldsymbol{v}_{A}(t):=\frac{d \boldsymbol{r}_{A}}{d t}=\frac{1}{m_{A}} \int_{A} \rho \boldsymbol{v} d^{3} x \\
\boldsymbol{a}_{A}(t):=\frac{d \boldsymbol{v}_{A}}{d t}=\frac{1}{m_{A}} \int_{A} \rho \frac{d \boldsymbol{v}}{d t} d^{3} x
\end{gathered}
$$

Is the center of mass unique?

- pure convenience, should not wander outside the body
- not physically measurable
- almost impossible to define in GR

$$
\begin{aligned}
m_{A} \boldsymbol{a}_{A}= & -G \int_{A} \int_{1} \rho \rho^{\prime} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} d^{3} x d^{3} x^{\prime} \\
& -G \int_{A} \rho\left[\sum_{B \neq A} \int_{B} \rho^{\prime} \frac{\boldsymbol{x}-\boldsymbol{x}^{\prime}}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|^{3}} d^{3} x^{\prime}\right] d^{3} x
\end{aligned}
$$

Define:

$$
\begin{aligned}
\boldsymbol{x} & :=\boldsymbol{r}_{A}(t)+\overline{\boldsymbol{x}} \\
\boldsymbol{x}^{\prime} & :=\boldsymbol{r}_{B}(t)+\overline{\boldsymbol{x}}^{\prime} \\
\boldsymbol{r}_{A B} & :=\boldsymbol{r}_{A}-\boldsymbol{r}_{B}
\end{aligned}
$$

Motion of extended fluid bodies

N-body point mass

$$
\left.\begin{array}{rl}
a_{A}^{j}= & G \sum_{B \neq A}\left\{-\frac{m_{B}}{r_{A B}^{2}} n_{A B}^{j}{ }^{\text {other bodies }}\right.
\end{array} \begin{array}{c}
\text { Effect of body's } \\
\text { own moments }
\end{array}\right)
$$

Two-body system with only body 2 having non-zero $I^{〔>}$

$$
\begin{aligned}
\boldsymbol{r} & :=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, \quad r:=|\boldsymbol{r}| \\
\boldsymbol{R} & :=\left(m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}\right) / m \\
m & :=m_{1}+m_{2} \\
\mu & :=m_{1} m_{2} / m
\end{aligned}
$$

$$
a^{j}=-\frac{G m}{r^{2}} n^{j}+G m \sum_{\ell=2}^{\infty} \frac{(-1)^{\ell}}{\ell!} \frac{I_{2}^{\langle L\rangle}}{m_{2}} \partial_{j L}\left(\frac{1}{r}\right)
$$

The two-body Kepler problem

- set center of mass at the origin ($X=0$)
- ignore all multipole moments (spherical bodies or point masses)
- define $\boldsymbol{r}:=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}, r:=|\boldsymbol{r}|, m:=m_{1}+m_{2}, \mu:=m_{1} m_{2} / m$
- reduces to effective one-body problem

$$
\boldsymbol{a}=-\frac{G m}{r^{2}} \boldsymbol{n}
$$

Energy and angular momentum conserved:

$$
\begin{aligned}
& E=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}-G \frac{m_{1} m_{2}}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \\
&=\frac{1}{2} \mu v^{2}-G \frac{\mu m}{r} \\
& L=m_{1} \boldsymbol{r}_{1} \times \boldsymbol{v}_{1}+m_{2} \boldsymbol{r}_{2} \times \boldsymbol{v}_{2} \\
&=\mu \boldsymbol{r} \times \boldsymbol{v} \\
& \begin{array}{l}
\text { orbital plane } \\
\text { is fixed }
\end{array}
\end{aligned}
$$

Effective one-body problem

Make orbital plane the $x-y$ plane

$$
\begin{aligned}
\boldsymbol{r} \times \boldsymbol{v} & =r^{2} \frac{d \phi}{d t}:=h \boldsymbol{e}_{z} \\
\boldsymbol{v} & =\frac{d \boldsymbol{r}}{d t}=\dot{\boldsymbol{r}} \boldsymbol{n}+r \dot{\phi} \boldsymbol{\lambda}
\end{aligned}
$$

From energy conservation: $\varepsilon=E / \mu$

$$
\begin{aligned}
\dot{r}^{2} & =2\left[\varepsilon-V_{\mathrm{eff}}(r)\right] \\
V_{\mathrm{eff}}(r) & =\frac{h^{2}}{r^{2}}-\frac{G m}{r}
\end{aligned}
$$

Reduce to quadratures (integrals)

$$
\begin{aligned}
t-t_{i} & = \pm \int_{r_{i}}^{r} \frac{d r^{\prime}}{\sqrt{2\left[\varepsilon-V_{\mathrm{eff}}\left(r^{\prime}\right)\right]}} \\
\phi-\phi_{i} & =h \int_{t_{i}}^{t} \frac{d t^{\prime}}{r\left(t^{\prime}\right)^{2}}
\end{aligned}
$$

Keplerian orbit solutions

Radial acceleration, or d / dt of energy equation:

$$
\ddot{r}-\frac{h^{2}}{r^{3}}=-\frac{G m}{r^{2}}
$$

Find the orbit in space: convert from t to ϕ :

$$
\begin{aligned}
& d / d t=\dot{\phi} d / d \phi=\left(h / r^{2}\right) d / d \phi \\
& \frac{d^{2}}{d \phi^{2}}\left(\frac{1}{r}\right)+\frac{1}{r}=\frac{G m}{h^{2}} \\
& \frac{1}{r}=\frac{1}{p}(1+e \cos f) \\
& f:=\phi-\omega \quad \text { true anomaly } \\
& p:=h^{2} / G m \text { semilatus rectum }
\end{aligned}
$$

Elliptical orbits ($e<1, a>0$)

$$
\begin{aligned}
r_{\mathrm{peri}} & =\frac{p}{1+e}, \quad \phi=\omega \\
r_{\mathrm{apo}} & =\frac{p}{1-e}, \quad \phi=\omega+\pi \\
a & =\frac{1}{2}\left(r_{\mathrm{peri}}+r_{\mathrm{apo}}\right)=\frac{p}{1-e^{2}}
\end{aligned}
$$

Hyperbolic orbits (e>1,a<0)

$$
\phi_{\text {in }}-\phi_{\text {out }}=\pi-2 \arcsin (1 / e)
$$

Keplerian orbit solutions

Useful relationships

$$
\begin{aligned}
\dot{r} & =\frac{h e}{p} \sin f \\
v^{2} & =\frac{G m}{p}\left(1+2 e \cos f+e^{2}\right)=G m\left(\frac{2}{r}-\frac{1}{a}\right) \\
E & =-\frac{G \mu m}{2 a} \\
e^{2} & =1+\frac{2 h^{2} E}{\mu(G m)^{2}} \\
P & =2 \pi\left(\frac{a^{3}}{G m}\right)^{1 / 2} \quad \text { for closed orbits }
\end{aligned}
$$

Alternative solution

$$
\begin{aligned}
r & =a(1-e \cos u) \\
n(t-T) & =u-e \sin u \\
\tan \frac{f}{2} & =\sqrt{\frac{1+e}{1-e}} \tan \frac{u}{2} \\
n & =2 \pi / P
\end{aligned}
$$

$u=$ eccentric anomaly
$f=$ true anomaly
$n=$ mean motion

Dynamical symmetry in the Kepler problem

- a and e are constant (related to E and h)
- orbital plane is constant (related to direction of h)
- ω is constant -- a hidden, dynamical symmetry

$$
\begin{aligned}
& \text { Runge-Lenz vector } \\
\boldsymbol{A} & :=\frac{\boldsymbol{v} \times \boldsymbol{h}}{G m}-\boldsymbol{n} \\
& =e\left(\cos \omega \boldsymbol{e}_{x}+\sin \omega \boldsymbol{e}_{y}\right) \\
& =\text { constant }
\end{aligned}
$$

Comments:

- responsible for the degeneracy of hydrogen energy levels
- added symmetry occurs only for $1 / r$ and r^{2} potentials
- deviation from $1 / r$ potential generically causes $d \omega / d t$

Keplerian orbit in space

Six orbit elements:

- $i=$ inclination relative to reference plane:

$$
\cos \iota=\hat{\boldsymbol{h}} \cdot \boldsymbol{e}_{Z}
$$

- $\Omega=$ angle of ascending node

$$
\cos \Omega=-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{e}_{Y}}{\sin \iota}
$$

- ω = angle of pericenter

$$
\sin \omega=\frac{\boldsymbol{A} \cdot \boldsymbol{e}_{\boldsymbol{z}}}{e \sin \iota}
$$

- $e=|A|$
- $a=h^{\wedge} 2 / G m\left(1-e^{2}\right)$
- $\mathrm{T}=$ time of pericenter passage

$$
T=t-\int_{0}^{f} \frac{r^{2}}{h} d f
$$

Comment: equivalent to the initial conditions x_{0} and v_{0}

