
Motion of extended fluid bodies 

Main assumptions: 
§  Bodies small compared to typical separation (R << r) 
§  “isolated” -- no mass flow 
§  Tint ~ (R3/Gm)1/2 << Torb ~ (r3/Gm)1/2 -- quasi equilibrium 
§  adiabatic response to tidal deformations -- nearly spherical 

External problem: 
§  determine motions of bodies as functions (or functionals) of internal 

 parameters 
Internal problem: 
§  given motions, determine evolution of internal parameters 
Solve the two problems self-consistently or iteratively 

Example: Earth-Moon system -- orbital motion  
raises tides, tidally deformed fields affect  
motions  



Basic definitions 

Is the center of mass unique? 
§  pure convenience, should not wander outside the body 
§  not physically measurable 
§  almost impossible to define in GR 

Motion of extended fluid bodies 

Define: 
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Two-body system with only body 2 having non-zero I<L> 

Motion of extended fluid bodies 
N-body point mass 

terms Moments of  
other bodies Effect of body’s  

own moments 

Moment-moment  
interaction terms 
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The two-body Kepler problem 
§  set center of mass at the origin (X = 0) 
§  ignore all multipole moments (spherical bodies or point masses) 
§  define 
§  reduces to effective one-body problem 

Energy and angular momentum conserved: 

orbital plane  
is fixed 

r := r1 � r2 , r := |r| , m := m1 +m2 , µ := m1m2/m
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Effective one-body problem 
Make orbital plane the x-y plane 

From energy conservation: ε = E/µ

Reduce to quadratures (integrals) 
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Elliptical orbits (e < 1, a > 0) Hyperbolic orbits (e > 1, a < 0) 

Radial acceleration, or d/dt of energy equation: 

Find the orbit in space: convert from t to φ: 
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Keplerian orbit solutions 



Keplerian orbit solutions 

Alternative solution 

u = eccentric anomaly 
f = true anomaly 
n = mean motion 

Useful relationships 

for closed orbits 
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Dynamical symmetry in the Kepler problem 
§  a and e are constant (related to E and h) 
§  orbital plane is constant (related to direction of h) 
§  ω is constant -- a hidden, dynamical symmetry 

Runge-Lenz vector 

Comments: 
§  responsible for the degeneracy of hydrogen energy levels 
§  added symmetry occurs only for 1/r and r2 potentials 
§  deviation from 1/r potential generically causes dω/dt 
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Keplerian orbit in space 

§  i = inclination relative to reference plane: 
 
§  Ω = angle of ascending node 
 
 
§  ω = angle of pericenter 
 
 
§  e = |A| 
§  a = h^2/Gm(1-e2)
§  T = time of pericenter passage 

Six orbit elements: 

Comment:  equivalent to the initial conditions x0 and v0 
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