Motion of extended fluid bodies

Main assumptions:
= Bodies small compared to typical separation (R << r)

= “isolated” -- no mass flow
* T.p ~ (R/6mM)V2 <« T, ~ (r3/6m)Y/2 -- quasi equilibrium
= adiabatic response to tidal deformations -- nearly spherical

External problem:
» determine motions of bodies as functions (or functionals) of internal

parameters

Internal problem:
= given motions, determine evolution of internal parameters

Solve the two problems self-consistently or iteratively &

Example: Earth-Moon system -- orbital motion

raises tides, tidally deformed fields affect
motions '
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Motion of extended fluid bodies

Basic definitions

dmA/dt:O
ma ::/p(t,w)d3a: q |
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ma

Is the center of mass unique?

= pure convenience, should not wander outside the body
= not physically measurable

= almost impossible to define in GR

maay = -—G ,0,0 ,|3d3:1:d3 :

—G :1:—:1:/3 x’
A B#A |5'3—33|

Define: x:=7s(t)+ T
' =rg(t)+x
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Moments of

other bodies Effect of body’s
own moments

ARy o Pk AV Moment-moment
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Two-body system with only body 2 having non-zero I
Rt & 1ol R R (]
R := (mi7r1 + mars)/m
m .= mji -+ mo

W= mims/m
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The two-body Kepler problem

= set center of mass at the origin (X = 0)
= ignore all multipole moments (spherical bodies or point masses)

=define r:=7r;—1ro,r:=|r|, m:=m1+mo, u:=mms/m
= reduces to effective one-body problem
Gm
a — ——2n
B

Energy and angular momentum conserved:

mi1rmso

E: 1?)%—|—

o orbital plane
is fixed
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Effective one-body problcm

Make orbital plane the x-y plane

rxv—r2@ = he,
dt
d
v:d—::rn+r¢)\

From energy conservation: € = E/n
*=2e — Ver(r)]
he a6
Vet (1) = — — —

r2 r

Reduce to quadratures (integrals)

T d,r,/
t-ti=2 | Vo = Vo ()

t dt’
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A=dn/d¢
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X
hyperbolic (E>0)
parabolic (E =0)

elliptical (E < 0)

radial distance
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Keplerian orbit solutions
Radial acceleration, or d/dt of energy equation:
b G

P g S

Find the orbit in space: convert from t to ¢:

d/dt = ¢d/dp = (h/r?)d/d¢

& (1N 1 _Gm
do? \ r r  h2

1 1 f:=¢ —w trueanomaly
T Z_?(l +ecos f) p:=h?/Gm semilatusrectum
Elliptical orbits (e < 1, a > 0) ' rradsalis arele (s A, @)
p | i
Tperi = 1+e’ ¢ =w Gin — Pousy = ™ — 2arcsin(1/e)
__b _
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Keplerian orbit solutions

Useful relationships

h
= —esinf
p
G 2
e —m(1+26(:osf+e2) = Gm (— 1 —)
p pEes d
l;:::__(luvn
2a
2h*E
2
=]
; T u(Gm)?

a3 1/2
P =927 (—) for closed orbits
Gm

Alternative solution

r=a(l —ecosu) ' u = eccentric anomaly
n(t—T)=u—esinu f = true anomaly
) ¥ 1+ e t y n = mean motion
an = = an —
2 1—e 2

n=2r/P
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Dynamical symmetry in the Kepler problem

= a and e are constant (related to E and h)
= orbital plane is constant (related to direction of h)
= @ is constant -- a hidden, dynamical symmetry

Runge-Lenz vector

v X h
A = —n
Gm
= e(coswe, +sinwe,)
— constant
Comments:

= responsible for the degeneracy of hydrogen energy levels
= added symmetry occurs only for 1/r and r? potentials
= deviation from 1/r potential generically causes dw/d*t
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Keplerian orbit in space

Six orbit elements:

= i = inclination relative to reference plane:

cost=h-ey
= Q = angle of ascending node

iL - €y
cos{) = ——
sin ¢
= » = angle of pericenter
: A - €. X
sSinw = —
esin ¢
“e= |A]

»a=h"2/6m(1-e?)
= T = fime of pericenter passage

F o2
= s Lo
/o Y

Comment: equivalent to the initial conditions x, and v,
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