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Outline 

1. Useful operations on time series 
Fourier transform 
Cross-correlation, autocorrelation, convolution 
Various versions of the power spectrum 

2. How to characterize a linear system 
Impulse response 
Frequency response 

3. Application to a simple harmonic oscillator 
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Time series 

For many purposes, it is interesting to consider 
a single-valued function of time, x(t). 

May be  
– Deterministic 
– Random 
– A sum of deterministic and random processes 

A variety of operations (and combinations of 
operations) on time series have proved 
useful. 
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The Fourier transform 
The Fourier transform X(f) of x(t) is defined as 
 
 
This measures the amount of a sine and cosine 

of each frequency f that it takes to build up 
the function x(t). 

Most useful when x(t) is a deterministic 
function. 
But used all over the place … 

Defines the relation between “the time domain” 
and “the frequency domain.” 
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The cross-correlation 

If we have two time series, x1(t) and x2(t), we 
can form the cross-correlation 

 
This measures the extent to which the shape of 

one time series matches the shape of the other 
time series, as a function of the time-shift τ 
between them. 

Often used in a situation in which one time 
series is deterministic and the other is 
random. 
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How to find weak signals in 
strong noise 

Look for something that looks more like the 
signal than noise, at suspiciously large level. 
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The autocorrelation 

We call the “cross-correlation” of a time series 
x(t) with itself the autocorrelation 

 
This gives a measure of the time scale over 

which the time series varies, and well as any 
scales on which it repeats. 

Used in as many and varied cases as the Fourier 
transform. 
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The convolution 

Two time series x1(t) and x2(t) can be combined 
in a different way, called the convolution 

 
Looks a lot like the cross-correlation, but note 

the difference in sign of the time variable t in 
the second time series. 

Plays a key role in describing the action of a 
linear system (e.g., a filter) on an input. In this 
application, one of the time series is 
deterministic, the other may be random. 
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The power spectrum 

If we take the Fourier transform of the  
auto-correlation of a time series, we form the 
power spectrum 

 
 
Like the Fourier transform, it measures the 

admixture of sinusoids of all frequencies f 
that make up the time series x(t);  
however, it throws away the phase 
information (sines vs. cosines.) 

Thus, most often used on random time series. 
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The single-sided power spectrum 

The power spectrum Sx(f) refers to exponentials 
of both positive and negative frequencies. 

Experimentalists usually prefer to think in 
terms of just positive frequencies, so there is a  
single-sided power spectrum 

 
 
True to form, I like this version of the power 

spectrum best. 
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The periodogram 

Consider a section (with duration T) of time series x(t), 
which has Fourier transform X(f). 

The periodogram of x(t) is given by 
Theorem: In the limit that T goes to infinity, the 

expectation value of the periodogram of x(t) is equal 
to the power spectrum Sx(f). 

This is another reminder that the power spectrum of 
x(t) measures the “amount” of sinusoids of frequency 
f in x(t). 

This is also the way that power spectra are usually 
calculated. 

./)( 2 TfX
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More on interpretation  
of the power spectrum 

Conceptual way of measuring the power 
spectrum: 

Apply signal x(t) to a bank of bandpass filters, 
each with 1 Hz pass band width, band centers 
at each integer frequency. 

Compute the mean-square value of the output 
of each filter, and display as a function of f. 

N.B.: If you sum up all outputs of all filters, 
then you recover the mean-square value of 
x(t). Thus, the units of the power spectrum 
must be [units of x]2/Hz. 
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The amplitude spectral density 

Experimenters have limited minds, and find it 
easier to get their minds around something 
that doesn’t square the units of x(t). So we 
often use the amplitude spectral density 

 
Its units are [units of x(t)]/Hz1/2. 
Why /Hz1/2? Each frequency “bin” of the 

spectrum of a random time series is 
independent of the others. So they add in 
quadrature. 
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Linear systems 

A linear system is a physical system that 
produces a single output from a single input, 
for which there is a linear relation between 
the input and the output. 

That is, if input h1(t) causes output v1(t) and 
input h2(t) causes output v2(t), the application 
of input h1(t) + h2(t) causes the output  
 v1(t) + v2(t). 
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Canonical example 
My favorite linear system, the simple harmonic 

oscillator, a.k.a. a mass on a spring. 
 
 
 
 
 
 
 
The input is the position of the top of the spring, and 

the output is the position of the mass. 
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Filters and transducers 

More terminology: 
A filter is a linear system whose input and 

output have the same units. 
Our canonical example is a filter, since both input 

and output are positions. 
A transducer is a linear system whose input and 

output have different units. 
A gravitational wave interferometer’s input is a 

dimensionless strain, but its output is an optical 
power in watts. 
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Equation of motion 

The equation of motion of our canonical linear 
system is 

 
(Note, I’ve included some velocity damping of 

the motion of the mass.) 
The input is applied by moving the top of the 

spring, thus stretching the spring (the mass 
has inertia), so a Hooke’s Law force is applied 
to the mass. 

( ) .0=+−+ oioo xbxxkxm 
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Impulse response 

The input-output relationship of a linear system 
can be encapsulated in its impulse response 
g(τ), giving its output due to an input 
consisting of a single unit impulse (i.e., a 
delta function) at τ = 0. 

Causality requires that 
.0for  0)( <= ττg



1 July 2015 ICTS Summer School on 
Gravitational Wave Astronomy 

19 

Impulse response of oscillator 
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Relation of output to input 

Theorem: The output of a linear system in 
response to an arbitrary input is that input 
convolved with the system’s impulse 
response. 

 
Intuition: Each instant of the input launches a 

new impulse response, with height 
proportional to the input’s strength at that 
moment. Total response is superposition of 
all of those impulse responses. 
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Intuition example 

Consider the output of the system at t = 0. 
 
The output consists of the sum of 

xi(0)g(0) 
xi(-1)g(1) 
xi(-2)g(2) 
xi(-3)g(3) 
… and all times between and beyond 

Note that present value depends only on past 
inputs. 
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Frequency response 

Deriving the impulse response from the e.o.m. can be a 
pain. It is more of a pain to evaluate the convolution 
of the impulse response with the input. 

Alternative: Work with the Fourier transform of the 
impulse response, which is called the  
frequency response 

 
 
As we’ll see, the algebra governing the frequency 

response is much simpler. Building up intuition in 
the frequency domain is very worthwhile. 
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Convolution Theorem 

The utility of the frequency response can be 
seen in the Convolution Theorem 

 
 
Multiplication (in the frequency domain) is a 

much easier operation than carrying out a 
convolution integral (in the time domain). 
This is one of the main reasons for the use of 
frequency-domain analysis. 
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Interpretation of  
the frequency response 

The Convolution Theorem can also be written 
as 

 
This means that the frequency response of a 

system is the (complex) ratio of the Fourier 
transform of its output to the Fourier 
transform of its input. 

This also suggests a way of measuring the 
frequency response, by measuring the 
complex ratio of output to input for a set of 
sinusoidal inputs. 
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Frequency response example 

Derivation of frequency responses also involves 
easier math than finding the impulse 
response. Here’s how. 

Consider a sinusoidal input of frequency f: 
 
Then, the output will also have a sinusoidal 

form, since the e.o.m. is linear.  
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Frequency response example (II) 

Recall: 
 
Plug our ansatz into the e.o.m. 
 
divide through by ei2πft everywhere, and find 
 
Finally, solve for G(f) = Xo(f)/Xi(f) 
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Frequency response example (II) 

 
 
Q: Why are we happy to have done this? 
A:  

1. Using only simple algebra, we’ve solved a 
differential equation. 

2. We can gain insight in the frequency domain that 
is hard to obtain in the time domain. 
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Bode plots 

A frequency response is typically graphed in 
the form of a Bode plot (actually two graphs 
on the same logarithmic frequency scale.) 

a) The magnitude of the frequency response is 
plotted on a logarithmic scale. The 
traditional units are deciBels (dB), given by 
Mag(dB) = 20 log10|G(f)|. 

b) The phase of G(f) is plotted on a linear scale 
between –180 and +180 degrees. 
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Bode plot of our example’s 
frequency response 
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Reading a Bode plot 

The resonant frequency stands out as the place 
where response is largest. It isn’t infinite, 
because of damping. 

At f << fres, response is unity ( = 0 dB.) The mass 
tracks the motion of the top end of the spring. 
The dynamics is “stiffness controlled.” 

At f >> fres, the mass moves less at higher 
frequencies (proportional to 1/f2,  
or –40 dB per decade), due to the inertia of 
the mass. 
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The utility of  
the frequency response 

The frequency response is a popular mathematical tool 
because 
– It is a simple way to solve for the dynamics of a system. 
– The frequency response of a set of systems cascaded 

together is simply the product of their individual frequency 
responses. (In time domain, we’d have to do multiple 
convolution integrals.) This will be handy when we analyze 
servos. (More on this in a later lecture.) 

– Measurement is straightforward.  
– Separation of frequencies lets one easily see dynamics on 

many scales. 
– Intuition is easy to gain, with practice. 
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