
29 June 2015 ICTS Summer School on 
Gravitational Waves 

1 

Gravitational waves and their 
interaction with detectors 

Peter Saulson 
Syracuse University 



29 June 2015 ICTS Summer School on 
Gravitational Waves 

2 

Outline 

• Goals and methods of these lectures 
• What is a gravitational wave? 
• How does a gravitational wave interact with 

an ideal detector? 
• Why is gravitational wave detection hard? 



Goals and methods of  
this set of lectures 

1. I want to build concrete (and intuitive) physical 
understanding of how to detect gravitational waves. 

2. Beautiful mathematics has its place, but not here. 
Here, math is in service to goal #1. 

3. Numbers are important. 
4. Because of small numbers, many physical 

phenomena come into play in gravitational wave 
detection. The field is rich! 

5. Experimental physics is a noble calling, and 
nowhere nobler than in gravitational wave 
detection. 
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A set of freely-falling  
test particles 
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Electromagnetic wave moves 
charged test bodies 
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Gravity wave: distorts set of test 
masses in transverse directions 
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Gravitational wave: 
a transverse quadrupolar strain 

strain amplitude: 
h = 2∆L/L 
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Gravitational waveform lets you 
read out source dynamics 

The evolution of the mass distribution can be 
read out from the gravitational waveform: 

 
 
 
Coherent relativistic motion of large masses can 

be directly observed from the waveform! 
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Gravitational waveform = 
oscillation pattern of test masses 

9 LIGO-G1500671 Strings 2015, Bangalore 
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A more modern detection strategy 

 
 
 
 
 
 
Tidal character of wave argues for test masses 

as far apart as practicable. Perhaps masses 
hung as pendulums, kilometers apart. 
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Sensing relative motions of 
distant free masses 

Michelson 
interferometer 
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A length-difference-to-brightness 
transducer 

Wave from x arm. 

Wave from y arm. 
Light exiting from 
beam splitter. 

As relative arm 
lengths change, 
interference causes 
change in 
brightness at 
output. 



Since we understand general relativity,  
we can calculate waveforms 

13 

Stellar-mass objects give signals in the audio band. (!) 

LIGO-G1500671 Strings 2015, Bangalore 
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Distance measurement  
in relativity… 

… is done most straightforwardly by  
measuring the light travel time along a 
round-trip path from one point to another. 
(Felix Pirani, 1956) 
Because the speed of light is the same for all 

observers. 
Examples:  

light clock 
Einstein’s train gedanken experiment 
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The space-time interval  
in special relativity 

Special relativity says that the interval 
 
between two events is invariant (and thus 
worth paying attention to.) 

In shorthand, we write it as 
with the Minkowski metric given as 
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Generalize a little 

General relativity says almost the same thing, 
except the metric can be different. 

 
The trick is to find a metric       that describes a 

particular physical situation.  
The metric carries the information on the space-

time curvature that, in GR, embodies 
gravitational effects. 

 

νµ
µν dxdxgds =2

µνg
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Gravitational waves 

Gravitational waves propagating through flat 
space are described by 

 
A wave propagating in the z-direction is 

described by 
 
 
 
Two free parameters implies two polarizations 

µνµνµν η hg +=
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Plus polarization 
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Cross polarization 
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Three test masses 
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Solving for variation in light 
travel time 

 For light moving along the x axis, we are 
interested in the interval between points with 
non-zero dx and dt, but with dy = dz = 0: 
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Gravity wave detectors 

Need: 
– A set of test masses, 
– Instrumentation sufficient to see tiny motions, 
– Isolation from other causes of motions. 

Challenge: 
Best astrophysical estimates predict fractional 

separation changes of only 1 part in 1021, or less. 
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Laser Interferometer 
Gravitational Wave Observatory 

4-km Michelson 
interferometers, with 
mirrors on pendulum 
suspensions, at 
Livingston LA and 
Hanford WA. 

Initial LIGO had  
hrms ~ 10-21. 

Advanced LIGO will 
be 10x more 
sensitive. 
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Other large interferometers 

• Virgo (Italy, France, etc.) 3 km 
Advanced Virgo upgrade now under way; will be almost as 

sensitive as Advanced LIGO, almost as soon. 
• GEO (Germany, Britain), 600 m 

Now studying squeezing and doing some “astrowatch” 
observing. Will continue upgrades through the advanced 
detector era. 

• KAGRA (Japan), 3 km 
Underground cryogenic detector, now under construction. 

• and, LIGO-India, 4 km ! 
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Gravity wave detection: 
challenge and promise 

Challenges of gravity wave detection appear so 
great as to make success seem almost 
impossible. 

The challenges are real, but are being overcome. 
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Gravitational wave detection is 
almost impossible 

What is required for LIGO to succeed: 
• interferometry with free masses, 
• with strain sensitivity of 10-21 (or better!), 
• (which is equivalent to  ultra-subnuclear 

position sensitivity),  
• in the presence of much larger noise. 
 



29 June 2015 ICTS Summer School on 
Gravitational Waves 

27 

Interferometry with free masses 

What’s “impossible”: everything! 
Mirrors need to be very accurately aligned (so 

that beams overlap and interfere) and held 
very close to an operating point (so that 
output is a linear function of input.) 

Otherwise, interferometer is dead or swinging 
through fringes. 

Michelson bolted everything down. 



29 June 2015 ICTS Summer School on 
Gravitational Waves 

28 

Strain sensitivity of 10-21 

Why it is “impossible”: 
Sensitivity hrms can be expressed as 
 
 
Natural “tick mark” on interferometric ruler is 

one wavelength. 
Michelson could read a fringe to λ/20, yielding 

hrms of a few times 10-9. 

.
arms oflength 

lengths arm comparecan   which wetoprecision ~rmsh
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Ultra-subnuclear position 
sensitivity 

Why people thought it was impossible: 
• Mirrors made of atoms, 10-10 m. 
• Mirror surfaces rough on atomic scale. 
• Atoms jitter by large amounts. 
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Large mechanical noise 

How large? 
Seismic: xrms ~ 1 µm. 

Can you filter it enough? 
Thermal:  

– mirror’s CM: ~ 3 x 10-12 m. 
– mirror’s surface: ~ 3 x 10-16 m. 
No filtering is possible. Can lower the temperature, 

but by enough? 
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Gravitational wave detection will 
succeed very soon 

All of these challenges sound impossible. 
And yet, all of them can be met. 
Detectors of 10-21 have been built and run.  
Detectors 10 or more times better will start 

operating in a few years, including in India. 
With them, we are just about certain to detect 

gravitational waves. 
This week’s goal is to know why we should be 

confident that this is true. 



Tutorial exercises 
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Gravitational waves 

Gravitational waves propagating through flat 
space are described by 

 
A wave propagating in the z-direction is 

described by 
 
 
 
Two free parameters implies two polarizations 

µνµνµν η hg +=
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Plus polarization 
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Cross polarization 
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Three test masses 
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Solving for variation in light 
travel time 

 For light moving along the x axis, we are 
interested in the interval between points with 
non-zero dx and dt, but with dy = dz = 0: 
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Solving for variation in light 
travel time: start with x arm 

 
h(t) can have any time dependence, but for now 

assume that h(t) is constant during light’s 
travel through ifo. 

Rearrange, take square root, and replace square 
root with 1st two terms of binomial expansion 

 
 
then integrate from x = 0 to x = L:  
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Solving for variation in light 
travel time (II) 

In doing this calculation, we choose coordinates 
that are marked by free masses.  
“Transverse-traceless (TT) gauge” 
Thus, end mirror is always at x = L. 

Round trip back to beam-splitter: 
 
y-arm (h22 = - h11 = -h): 
 
Difference between x and y round-trip times: 

cLht /11=∆

chLty /−=∆

chL /2=∆τ
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Multipass,  phase diff 

To make the signal larger, we can arrange for N 
round trips through the arm instead of 1.  
More on this in a later lecture. 

 
It is useful to express this as a phase difference, 

dividing time difference by radian period of 
light in the ifo: 

storh
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How do we make the  
travel-time difference visible? 

In an ifo, we get a change in output power as a 
function of phase difference. 

At beamsplitter, light beams from the two arms 
are superposed. Thus, at the port away from 
laser (XX true?) 

 
and at the port through which light enters 
 
 

φ∆= cos0EEout

φ∆= sin0EErefl
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Output power 

We actually measure the optical power (not the 
electric field) at the output port (recall             )  

 
 
 
Note that energy is conserved: 

( )φ∆+= cos1
2
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Interferometer output vs.  
arm length difference 
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Ifo response to h(t) 

Free masses are free to track time-varying h. 
As long as τstor is short compared to time scale of h(t), 

then output tracks h(t) faithfully. 
If not, then put time-dependent h into integral of  

slide 13 before carrying out the integral. 
Response “rolls off” for fast signals. 

This is what is meant by interferometers being broad-
band detectors. 

But, noise is stronger at some frequencies than others. 
(More on this later.) This means some frequency 
bands have good sensitivity, others not. 
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