
Neutron Stars

We now enter the study of neutron stars. Like black holes, neutron stars are very

compact objects, so general relativity is important in their description. Unlike black holes,

they have surfaces instead of horizons, so they are a lot more complicated than black holes.

We’ll start with an overall description of neutron stars, then discuss their high densities and

strong magnetic fields.

Summary of Neutron Stars

A typical neutron star has a mass of 1.5 − 2M⊙ and a radius of ∼ 10 − 15 km. It can

have a spin frequency up to ∼1 kHz and a magnetic field up to perhaps 1015 G or more. Its

surface gravity is around 2 − 3 × 1014 cm s−2, so mountains of even perfect crystals can’t

be higher than < 1 mm, meaning that these are the smoothest surfaces in the universe.

They have many types of behavior, including pulsing (in radio, IR, optical, UV, X-ray,

and gamma-rays, but this is rarely all seen from a single object), glitching, accreting, and

possibly gravitational wave emission. They are the best clocks in the universe; the most

stable are thousands of times more stable in the short term than the best atomic clocks.

Their cores are at several times nuclear density, and may be composed of exotic matter

such as quark-gluon plasmas, strange matter, kaon condensates, or other weird stuff. In

their interior they are superconducting and superfluid, with transition temperatures around

a billion degrees Kelvin. All these extremes mean that neutron stars are attractive to study

for people who want to push the envelope of fundamental theories about gravity, magnetic

fields, and high-density matter.

High Densities

Let’s start, then, with high densities. An essential new concept that is introduced at high

densities is Fermi energy. The easiest way to think about this is in terms of the uncertainty

principle,

∆p∆x >∼ ~ . (1)

Note that, in the spirit of order of magnitude estimates, we are dropping a factor of 2: really

∆p∆x ≥ ~/2, if we want to be precise. If something is localized to a region of size ∆x, then

its momentum must be at least ~/∆x. That means that in a dense environment, there is

a momentum, and hence an energy, associated with the confinement. Therefore, squeezing

something increases its total energy, and this Fermi energy acts as a pressure (sometimes

called degeneracy pressure). The existence of this energy has a profound role in the structure

of white dwarfs, and especially neutron stars. In fact, if degeneracy pressure dominates, then

unlike normal stars, which get larger as they get more massive, degenerate stars are smaller



at higher masses. In particular, an approximate relation is that R ∼ M−1/3 for a degenerate

star.

First, let’s get some basic numbers. If the energy and momentum are low, then the

Fermi energy EF is related to the Fermi momentum pF ∼ ~/∆x by EF ≈ p2F/2m, where m

is the rest mass of the particle. Since ∆x ∼ n−1/3, where n is the number density of the

particle, in this nonrelativistic regime EF ∼ n2/3. At some point, however, EF > mc2. Then

EF ∼ pF c, so EF ∼ n1/3. For electrons, the crossover to relativistic Fermi energy happens at

a density ρ ∼ 106 g cm−3, assuming a fully ionized plasma with two nucleons per electron.

For protons and neutrons the crossover is at about 6×1015 g cm−3 (it scales as the particle’s

mass cubed). The maximum density in neutron stars is no more than 1015 g cm−3, so for

most of the mass of a neutron star the electrons are highly relativistic but the neutrons and

protons are at most mildly relativistic.

Let’s now think about what that means. Ask class: suppose we have matter in which

electrons, protons, and neutrons all have the same number density. For a low density, which

has the highest Fermi energy? The electrons, since at low densities the Fermi energy goes

like the inverse of the particle mass. Ask class: given what we said before, what is the

approximate value of the electron Fermi energy when ρ = 106 g cm−3? That’s the relativistic

transition, so EF ≈ mec
2 ≈ 0.5 MeV. Then at 107 g cm−3 the Fermi energy is about 1 MeV,

and each factor of 10 doubles the Fermi energy since EF ∼ n1/3 in the relativistic regime.

What that means is that the energetic “cost” of adding another electron to the system is

not just mec
2, as it would be normally, but is mec

2 +EF . It therefore becomes less and less

favorable to have electrons around as the density increases.

Now, in free space neutrons are unstable. This is because the sum of the mass-energies

of an electron and a proton is about 1.5 MeV short of the mass-energy of a neutron, so it

is energetically favorable to decay. Ask class: what happens, though, at high density? If

mp +me + EF > mn, then it is energetically favorable to combine a proton and an electron

into a neutron. Therefore, at higher densities matter becomes more and more neutron-rich.

First, atoms get more neutrons, so you get nuclei such as 120Rb, with 40 protons and 80

neutrons. Then, at about 4×1011 g cm−3 it becomes favorable to have free neutrons floating

around, along with some nuclei (this is called “neutron drip” because the effect is that

neutrons drip out of the nuclei). At even higher densities, the matter is essentially a smooth

distribution of neutrons plus a ∼ 5 − 10% smattering of protons and electrons. At higher

densities yet (here we’re talking about nearly 1015 g cm−3), the neutron Fermi energy could

become high enough that it is favorable to have other particles appear.

It is currently unknown whether such particles will appear, and this is a focus of much

present-day research. If they do, it means that the energetic “cost” of going to higher density

is less than it would be otherwise, since energy is released by the appearance of other, exotic



particles instead of more neutrons. In turn, this means that it is easier to compress the star:

squashing it a bit doesn’t raise the energy as much as you would have thought. Another way

of saying this is that when a density-induced phase transition occurs (here, a transition to

other types of particles), the equation of state is “soft”.

Well, that means that it can’t support as much mass. That’s because as more mass is

added, the star compresses more and more, so its gravitational compression increases. If

pressure doesn’t increase to compensate, in it goes and forms a black hole. What all this

means is that by measuring the mass and radius of a neutron star, or by establishing the

maximum mass of a neutron star, one gets valuable information about the equation of state,

and hence about nuclear physics at very high density. This is just one of many ways in which

study of neutron stars has direct implications for microphysics.

Comment: the extra “squishiness” of matter when it is near a density-induced phase tran-

sition may also have importance in the early universe. It’s been pointed out that when the

universe goes from being a quark-gluon plasma to being made of nucleons (at about 10−5 s

after the Big Bang), this is a density-induced phase transition, so it may be comparatively

easy to form black holes then. The electroweak phase transition, which happened earlier, is

another possibility. Perhaps one of these transitions led to the formation of so many black

holes that they form dark matter; incidentally, because this event happened before big bang

nucleosynthesis, no baryon number constraints are violated. This is not the leading model

for dark matter, but it is thought-provoking.

Estimating the Masses and Radii of Neutron Stars

From the preceding it is clear that neutron star mass and radius measurements are helpful

in constraining the properties of cold high-density matter. The “cold” in that statement

means that the temperature is much less than the Fermi temperature, so neutron stars are,

especially in their cores, very close to the equilibrium for cold matter.

So how well can we measure neutron star masses and radii? Masses can be straightfor-

ward if the star is in a binary. Indeed, the masses of some neutron stars have been measured

with the highest precision of any objects outside the Solar System. These are the ones for

which post-Keplerian parameters such as pericenter precession, Shapiro delay, and orbital

decay due to gravitational radiation can be measured. Two neutron stars in binaries have

masses consistent with 2 M⊙, to 0.04 M⊙ precision. These high masses do place interesting

constraints on dense matter, but a lower mass limit alone isn’t enough: the maximum mass

could be much higher than 2 M⊙, and the radius consistent with this range of masses could

run from 10− 15 km for a canonical 1.4 M⊙ star.

We’d really like to measure the radius. Unfortunately, existing estimates are completely

dominated by systematic errors, to the extent that I don’t think we can claim to have any con-



straint on the radius. As an example (and please see my review http://arxiv.org/pdf/1312.0029v1.pdf

for more details), you might think that you could measure neutron star radii in the way that

you can measure the radii of ordinary stars. That is, you could (1) determine the approx-

imate bolometric flux F from the star, (2) determine its distance d, so that (assuming,

reasonably, that the radiation is nearly isotropic) the star’s luminosity is L = 4πd2F , and

(3) fit the star’s spectrum to a blackbody, such that the temperature T of the blackbody

determines the radius R via L = 4πR2σSBT
4, where σSB is the Stefan-Boltzmann constant.

So what’s wrong with that? What’s wrong is that radii determined in this manner are

of the order of 5 km, which is well under the theoretically reasonable ∼ 10 km minimum.

The problem with this method turns out to be that although neutron star spectra often look

a lot like Planck spectra in the limited range of X-ray energies where we can see them, they

are not blackbodies. Instead, they have color temperatures (i.e., the temperature you get

by fitting a blackbody) that can easily be twice their effective temperatures (which is the

temperature you should put into the L = 4πR2σSBT
4 law). To make things more difficult,

neutron star spectra do not have identifiable atomic lines; they are just continuum spectra,

which means that we don’t have any independent way to check our fits.

Now, I’m not giving up on X-ray observations of neutron stars. I’m a member of the

NICER satellite team, and also a member of the LOFT collaboration, and I’ve done a great

deal of work that convinces me that there are methods (including fits of the energy-dependent

waveforms from rotating hot spots) that have excellent prospects for providing us with radii

that are not susceptible to these kinds of systematic errors. Nonetheless, for a matter as

important as neutron star radii (since it is essential for a key problem in nuclear physics),

we really want multiple independent methods, so that we can cross-check our answers.

So how could gravitational waves help? Suppose that we detect the gravitational radia-

tion coming from the coalescence of two neutron stars, and that we compare them with the

gravitational waveform we would expect from two black holes of the same mass (even though

we don’t expect black holes to be as light as neutron stars, we can perform the exercise).

When the two objects are well separated from each other, we find that the waveforms are

nearly identical. But as they approach within a few mutual radii, tidal effects on the stars

cause deviations from the black hole waveform. The larger the radii, for a given mass, the

larger the deviations. Thus, it is hoped, the radius can be measured, although it actually

turns out that a parameter called the tidal deformability will be what is measured more

directly from the waveforms.

Another idea, this time related to mass, was conceived independently by a group led by

Chris Fryer, and my group at Maryland. The idea has to do with short gamma-ray bursts.

These bursts are believed to be the result of the merger between two neutron stars, or a

neutron star and a black hole. Moreover, if the merger is between two neutron stars, it has



been argued that the merged remnant has to collapse quickly (in less than 0.1 seconds) to

a black hole, because if it does not then there will be a large wind of baryons driven by

neutrinos, and this will cause the duration of the burst to exceed what is normally seen.

This means that the total mass of the two neutron stars that merge must be greater

than what can be sustained by a rotating neutron star (if it is less, then the rotating remnant

is stable and thus does not collapse as needed). Fryer et al., and Lawrence et al. (my group)

thus argued that we can obtain an upper limit on the maximum mass of a neutron star,

which complements the lower limit of ≈ 2 M⊙ that we get from the two observed systems

mentioned earlier. Now, this upper limit depends on the masses of the two neutron stars

that merge; if those masses are large, then so is the upper limit, but if the masses are small,

the upper limit is small and thus we could have quite a tight constraint on the maximum

mass of a slowly rotating neutron star. Indeed, as we showed, if the neutron stars that

combine to produce short gamma-ray bursts have masses in the range of the ones we know

in our galaxy, the upper limit is just 2.05 − 2.2 M⊙, which is very close to 2 M⊙! But the

way to get really reliable constraints is to see a gamma-ray burst and also see gravitational

waves from the merger, because this way we will know the total mass. I find this to be an

exciting prospect for a previously unanticipated constraint on dense matter than will come

from gravitational wave detections.

Puzzles Related to Neutron Stars

• What is the equation of state of the matter in the cores of neutron stars? This is the

really big question, and as we just said, gravitational wave observations will provide an

excellent complement (at least) to electromagnetic observations.

• What are the masses of neutron stars in double neutron star systems? In our Galaxy,

the mass range is remarkably narrow: from 1.25 M⊙ to 1.44 M⊙, even though we know

other neutron stars with masses up to 2.01M⊙. The narrow mass range probably means

that there is a narrow channel of formation of these objects. Are there significant

exceptions we can find? Can we find any neutron stars with masses lower than the

∼ 1.2− 1.25 M⊙ that we think is the minimum that can form from core collapse?

• What are the spins of neutron stars in double neutron star systems? Current wisdom is

that rapidly-rotating neutron stars (with periods of a few milliseconds or less) acquire

their angular momentum via accretion of matter from a companion. Double neutron

star systems don’t have the time for much accretion (at least in the usual picture),

because the progenitors of neutron stars are high-mass stars that therefore live just a

short time. We therefore expect to see relatively slowly-rotating neutron stars in double

neutron star systems, and this expectation is borne out: the shortest period we know

in such a system is 23 milliseconds, which might sound fast but it probably > 30 times



longer than it could be. It is therefore usually assumed that gravitational waveforms

won’t be affected much by spin. But are there double neutron star systems with much

faster spin?

Really Big Magnetic Fields

In addition to ultrahigh densities, another unique aspect of neutron stars is their mag-

netic fields. By a factor of 106 − 107, neutron stars have the strongest magnetic fields in the

known universe. The fields can therefore have extremely important effects on matter in ways

not approached anywhere else. Here we’ll concentrate on “ordinary” fields of ∼ 1012 G. For

the so-called “magnetars”, the field strengths are believed to extend up to ∼ 1015 G.

Here, by the way, is a place where we can do a good order of magnitude calculation. How

strong an average magnetic field would you need to make a significant impact on the structure

of the star as a whole? A very rough estimate would involve comparing the mass-energy of

the magnetic field to the mass-energy of the star as a whole. The energy density of a magnetic

field of strength B is B2/8π. This, multiplied by the volume of the star, is the mass-energy

in the magnetic field. This needs to be compared with Mc2 ≈ 2.5 × 1054 erg (M/1.4 M⊙),

where we have scaled to a canonical neutron star mass of 1.4 M⊙. If the volume of the star

is around 1019 cm3, then this means that B2/8π = 2.5× 1035, so B ≈ 2× 1018 G(!!!). Thus

field strengths less than “only” 1015 G won’t have large-scale effects on the stellar structure,

although they could have important effects on atomic spectra and energy transport near the

surface where the density is much less than average. This, by the way, is the quick answer

to why magnetic fields aren’t expected to have any detectable influence on the gravitational

waveforms of inspiraling neutron stars; it is sometimes suggested that the fields could be

amplified significantly by twists caused by the orbit, but in reality the field would balloon

out to reduce magnetic energy, and thus the magnetic field can’t get amplified (at least

before merger) to anything like the magnitude that would be required to have a significant

effect on gravitational radiation.

Magnetic fields tend to have a minor impact on the structure of ordinary stars, and even

a minor impact on their spectra (fields less than 105 G or so are difficult to detect in stars

other than the Sun). For neutron stars, however, their effect on the spectrum is dominant,

as is their effect on radiation transport properties, which are in turn the most important

energy transport mechanisms near the surface of the star.

Let’s start the treatment by thinking of a free electron spiraling in a magnetic field.

Suppose that it is moving at an angular frequency ω in a circle of radius r, and apply the

classical force balance equation. Ask class: what is the centrifugal force for an electron, of

mass me? It’s just meω
2r. Ask class: if it is moving at an azimuthal velocity vφ, what is

the magnetic force on the electron for a magnetic field B? Simply eBvφ/c. Equating the



two, and using vφ = ωr, we find the frequency (the cyclotron frequency)

ωc =
eB

mec
= 11.5 keVB12 , (2)

where as usual the convention is that B12 = B/1012 G. Another important quantity is the

scale length of the radius of the orbit, which is given by the Bohr-Sommerfeld quantization

rule:

Lz = meωr
2 ∼ m~ (3)

where m = ±1,±2, . . . is the azimuthal quantum number. Therefore, the radius of the mth

orbital is something like

rm ∼ r̂
√

|m| , (4)

where r̂ = (~c/eB)1/2 = 2.5 × 10−10 B
−1/2
12

cm is the Landau radius. More exactly, rm =

r̂
√

2|m|+ 1.

Ask class: we now want to estimate when the orbitals of atoms are affected significantly

by the magnetic field. What should we compare? We could compare energies (cyclotron

versus Coulomb), forces (magnetic versus Coulomb), or distances (size of atomic orbital

versus radius of mth Landau orbital). All three give approximately the same answer. Using

forces, equality happens when

Ze2

r2m
=

evmB

c
=

eωcrmB

c
, (5)

giving the critical field for state m of a hydrogenic atom of nuclear charge Z as

Bc =
Z2

(2m+ 1)3
B0 . (6)

The critical field for the ground state of hydrogen is B0 = m2

ece
3/~3 = 2.35 × 109 G, at

which point the cyclotron energy is 2× 13.6 eV. Ask class: given this, are magnetic effects

likely to be most important for ground states or excited states? For hydrogen or for heavier

atoms? Excited states and low-charge nuclei are easiest to get in the magnetically dominated

regime. In fact, lab experiments with high Rydberg level hydrogen (n ∼ 100 − 200!) have

shown some of these effects.

Ask class: consider now a neutron star with a magnetic field ∼ 1012 G. The energy

difference between the ground state and first excited Landau state is ~ωc. At what ap-

proximate surface temperature would one expect excited Landau states to exist? At about

kT = 10 keV, or T ∼ 108 K. This is much hotter than most neutron star surfaces, which

have T ∼ 105 − 106 K.

When B ≫ Bc and kT ≪ ~ωc, atoms become essentially cylindrical (simple when B

is very small or very large, but complicated when B is intermediate). In this limit, the



Coulomb force dominates only along the magnetic field, and the orbitals are tightly bound

across the field. The length across the field for the ground state is therefore r̂, and the length

along the field is greater, with some length ℓ to be determined. The energy of these orbitals

is

E ∼
~
2

2meℓ2
−

Ze2

ℓ
ln(ℓ/r̂) . (7)

Minimizing with respect to ℓ gives

ℓ ∼

(

a0/Zr̂

ln(a0/Zr̂)

)

r̂ (8)

where a0 = 5 × 10−9 cm is the Bohr radius. For example, when B = 1012 G, a0 ≈ 20r̂, so

ℓ ≈ 7r̂ for hydrogen. The energy is then

E ∼ Z2
~
2

mea20
ln2 (a0/Zr̂) . (9)

The factor before the log is just the usual ground state energy without any magnetic field.

For B = 1012 G, the multiplying factor in this formula is about 9, predicting about 120 eV

for the ground state energy of hydrogen. The real value is about 160 eV.

This is amazing! It means that for a typical NS magnetic field, the ground state energy

is ten times what it is for no field! This makes a huge difference in many ways.

Superconductivity and Superfluidity

One of the principles that we just encountered is that nature, being lazy, will go for the

lowest energy state possible in some circumstance, all else being equal. That’s why there is

progressive neutronization of matter at higher and higher densities: it’s a lower energy state.

In that same general spirit, we also can have superconductivity and superfluidity in neutron

stars.

The general idea is that if there is an attractive pairing interaction between fermions,

then they can couple to form a state with integer spin, and can therefore act like bosons. At a

low enough temperature, these “bosons” can form a condensate-like state in which all of the

bosons occupy the same quantum state and form a superfluid. If the component fermions

are charged, this forms a superconductor. In normal laboratory experience, the pairing

is electronic and happens only at very low temperatures (other than the ceramic high Tc

superconductors, which do their thing at liquid nitrogen temperatures or a bit above, almost

all laboratory superfluid or superconducting phenomena are observed at temperatures less

than 20 K). However, in the dense cores of neutron stars, nucleonic pairing can happen.

As with all highly degenerate systems, pairing occurs between states near the Fermi

surface (recall that in the cores of NS, both protons and neutrons are degenerate, just not



relativistically so). Since there are many more neutrons than protons, neutrons and protons

can’t pair up easily because their momenta are substantially different. So, consider only

n−n and p−p pairings. The first gives a superfluid, and the second gives a superconductor.

Another general principle of phase transitions is that they happen only when it is ener-

getically favorable. In this case, we need to compare the pairing energy ∆ with Ask class:

what other energy? The thermal energy, kT . The pairing energy is extremely difficult to

calculate from first principles; one reason is that the medium in which the pairings takes

place makes a difference (particularly for the outnumbered protons). The value, however, is

somewhere around 1 MeV. Ask class: what does that mean for the approximate transition

temperatures? Since 1 eV equates to about 104 K, the transition temperature is around

1010 K (these are the real high-temperature superconductors of the universe!). The interior

temperatures of neutron stars are expected to be less than this for stars older than a few

hundred years at the most, so most of the mass of neutron stars is superconducting and su-

perfluid(!). In the inner crust, between neutron drip (at about 4× 1011 g cm−3) and nuclear

density (about 2× 1014 g cm−3), the free neutrons are probably paired in the 1S0 state, as in

BCS superconductivity (that is, their spins are opposite). At higher densities, calculations

suggest they are in the 3P2 state, with aligned spins. Protons are probably coupled in the
1S0 state to form a superconductor.

Ask class: since most of the mass of a neutron star is a superconducting superfluid,

what consequences would this have for some of the bulk properties of the star, such as its

thermal, rotational, or magnetic properties? A superfluid is irrotational, so any rotation

must be quantized in vortices of ordinary matter. However, these vortices are close enough

together (about 10−2 cm for a 30 Hz rotator like the Crab) that for many purposes one can

treat the interior as rigidly rotating. A superfluid also is a perfect thermal conductor, so to

an even greater extent than for normal degenerate matter, the interior of a neutron star is

isothermal. A superconductor excludes magnetic flux, so any magnetic field in the interior

must likewise be quantized in vortices.

Superconductivity and superfluidity, if their effects are observed in NS, could tell us a

lot about the pairing and hence inform us about aspects of nuclear physics that are mighty

difficult to get from laboratories. This is an extremely indirect process, and too long a

story to go into here. Suffice it to say that it has been invoked to explain glitches (sudden

but small changes in the spin frequency of pulsars) and the evolution of magnetic fields in

neutron stars.


