
Introduction and Background

For the first few problems we will practice some calculations using the Schwarzschild space-

time. In Schwarzschild coordinates, the invariant interval is

ds2 = gαβdx
αdxβ = −(1− 2M/r)dt2 + dr2/(1− 2M/r) + r2(dθ2 + sin2 θdφ2) . (1)

Here we have used the Einstein summation convention, in which we sum, over all four

spacetime components, any time we have the same index repeated: one as a subscript,

one as a superscript. Therefore, for example, the square of the four-velocity is uαuα =

uαu
α = utut + urur + uθuθ + uφuφ. The covariant components (with lowered, i.e., subscript,

indices) of the metric tensor g can be read off the line element: gtt = −(1 − 2M/r), grr =

1/(1− 2M/r), gθθ = r2, gφφ = r2 sin2 θ, and all other elements are zero (e.g., gφt = gθr = 0).

The contravariant components of the metric tensor can be obtained as a matrix inverse of

the covariant components:

gαβgβµ = δαµ , (2)

where δαµ is the Kronecker delta: it equals 1 if α = µ, and equals zero otherwise. Note

that because we sum over β in this expression, it is a dummy index; we can use any symbol

we like, as long as it appears once as a superscript and once as a subscript on a single side

of the equation. Because the Schwarzschild metric tensor is diagonal, we have simply that

gtt = −1/(1 − 2M/r), grr = (1 − 2M/r), gθθ = 1/r2, and gφφ = 1/(r2 sin2 θ), with other

components being zero.

We use the metric tensor to raise or lower indices. Suppose, for example, that we have

a vector vα, which is therefore in contravariant form. To get the covariant components,

we write vβ = vαgαβ. Here, as in any tensor equations, we must ensure that the “free”

(unsummed) indices match on either side, including whether they are up or down. As a

check, we see that we sum over α, so that doesn’t count, and β is a lowered index on both

sides. Similarly, we could write vµ = gµνvν .

Let’s also say a few words about what the covariant and contravariant components

mean, at least for the four-velocity u. Suppose we are considering the motion of a particle

of nonzero rest mass. Then uα = dxα/dτ , where τ is the proper time (i.e., the time as

measured by someone riding along with the particle). For example, ur = dxr/dτ , which we

would usually write as just dr/dτ . Similarly, ut = dt/dτ , which might look strange, but note

that in general time will run differently for an observer at infinity (who sees time intervals

of dt) than for a local observer (who sees time intervals of dτ). Those are the contravariant

components.

The covariant components are more directly related to the conserved quantities. For

example, for the metric signature we have chosen −ut is the specific energy at infinity. That

is, this is the energy per unit mass of the particle, with the reference point being that



−ut = 1 for a particle at rest at infinite distance from the gravitating source. Similarly,

uφ is the specific angular momentum; it is the angular momentum per unit mass of the

particle. ur and uθ do not have particularly important meanings. −ut and uφ are conserved

in the motion of a test particle in the Schwarzschild spacetime (test particle means that it

reacts to the spacetime, but does not affect it). Another conserved quantity is the squared

four-velocity: for a particle with nonzero rest mass, uαuα = utut+urur +uθuθ +uφuφ = −1.

Let’s do a test problem first to give you an idea of how to do calculations in the

Schwarzschild spacetime.

0. Consider a particle in temporarily azimuthal motion, with ur = uθ = 0. Using the fact

that uαuα = −1 for a particle with nonzero rest mass, derive the specific energy −ut as a

function of uφ. Note that uφ does not have to be the value for a Keplerian orbit. To test

your expression, consider a particle on the surface of a nonrotating star of radius r (such

that uφ = 0). Does your expression make sense in the Newtonian limit M/r ≪ 1?

Answer:

In spherical coordinates, the general formula for a particle of nonzero rest mass expands to

utut + urur + uθuθ + uφuφ = −1 . (3)

Here ur = uθ = 0. Our strategy will be to use the Schwarzschild metric tensor to express ut

and uφ in terms of their covariant counterparts.

utut + uφuφ = −1

(gttut)ut + (gφφuφ)uφ = −1

gtt(ut)
2 + gφφ(uφ)

2 = −1
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t + r−2u2

φ = −1

u2
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φ/r
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−ut = (1− 2M/r)1/2(1 + u2

φ/r
2)1/2 .

(4)

Note that because the metric tensor is diagonal, we can get away with writing ut = gttut. If

we were being completely general we would need to write ut = gtαuα = gttut+gtrur+gtθuθ+

gtφuφ. Our sign choice in the final square root is determined by our overall convention, which

indicates that −ut is positive. When uφ = 0, this becomes −ut = (1 − 2M/r)1/2. In the

Newtonian limit M/r ≪ 1, this is approximately 1−M/r, or 1−GM/(rc2) when we put the

factors of G and c back in. This is the specific energy so to get the actual energy we multiply

by mc2 to get mc2 − GMm/r for a particle of mass m. This is indeed the weak-gravity

expression: the total energy is the rest-mass energy minus the gravitational binding energy.

Now it’s your turn. Good luck!



1. The specific angular momentum of a particle of nonzero rest mass in a circular orbit

(which, again, has ur = uθ = 0) is given by

u2

φ =
Mr2

r − 3M
. (5)

Given that, compute the specific energy of a particle in a circular orbit. Does this work in

the Newtonian limit M/r ≪ 1?

2. Find the radius r at which the angular momentum is a minimum, and the value of the

minimum angular momentum. By considering a circular orbit that loses a small amount of

angular momentum, make a qualitative argument that the radius of minimum uφ is also the

radius of the innermost stable circular orbit (ISCO). Find the specific energy for a particle in

a circular orbit at the ISCO; what fraction of the particle’s rest-mass energy must be released

to get to that orbit, and how does that compare with the 0.7% efficiency of hydrogen fusing

into helium?

3. Using your expression for the specific angular momentum of a circular orbit, and for the

specific energy, to derive the radius of the marginally bound orbit, which is where −ut = 1

and hence a slight perturbation outward could send the particle to infinity.

4. The Schwarzschild time coordinate t is the elapsed time as seen at infinity. Therefore,

the angular velocity of an orbit as seen from infinity is dφ/dt = (dφ/dτ)/(dt/dτ) = uφ/ut.

Use this and your previous expressions to derive the angular velocity of a circular orbit at

radius r, as seen at infinity.

5. Dr. Sane plans to explore a black hole more directly. His idea is to free-fall radially

to a nonrotating 10M⊙ black hole, then, just outside the horizon, fire his rockets outward

to escape. Ignoring the overwhelming acceleration he would feel when he fired his rockets,

estimate the maximum tidal force he would feel during his radial free fall and use that

estimate to counsel him on whether his trip is advisable.

6. Stunned by your answer to the previous question, Dr. Sane has resolved to explore black

holes in the safe way: theoretically. In doing so, he has proven that black holes cannot exist.

Indeed, black holes violate special relativity; this had been missed by all the so-called great

minds of the past. To understand his proof:

(a) Consider a particle that is initially at rest at infinity and falls radially into a Schwarzschild

black hole: thus −ut = 1 and uθ = uφ = 0. Derive the expression, as a function of r, for the

proper radial velocity ur = dr/dτ .



(b) You should find that inside the event horizon, ur > 1; remembering that this is in units

of c, this implies the obviously ridiculous result that the speed is faster than light inside

the horizon. To demonstrate that this is not simply a pathology of the coordinates, Dr.

Sane points out that the radial velocity of this particle seen by a local static observer gives

exactly the same expression that you got for the proper radial speed, so again we would

have a contradiction if r < 2M , where 2M is the radius of the Schwarzschild event horizon.

Therefore, all objects must have surfaces with r > 2M .

The US National Science Foundation has been called in to investigate a possible case of fraud

against the gravitational wave community, which has claimed that they will detect BH-BH

mergers. You have been consulted as an external expert to deliver your opinion. What is

your evaluation?


