Introduction and Astrophysical Thinking

The era of direct detection of gravitational waves is imminent. With it will come the
opening of a new window onto the universe, which will bring unique insights into black
holes, neutron stars, stellar dynamics, and possibly categories or properties of unanticipated
sources. In the five lectures I will give in this school, I will go through some of the properties
of the sources that will likely be seen with gravitational waves, and some of the currently
unresolved questions.

But before we get to that stage, it is important to say a bit about astrophysical thinking,
and how the most productive approaches differ from those that might be more familiar for
normal physics problems. A key difference is that in astrophysics we usually can’t experiment
on the sources we are studying. This is probably good for humanity in general;, we're not
ready as a species to be trusted with laboratory black holes and neutron stars! But it does
mean that, unlike what is often true in terrestrial labs, we cannot probe systems by changing
one variable at a time to see what happens.

The net result is that astrophysicists are routinely confronted by systems that are fun-
damentally too complicated to understand completely. A star, for example, is spectacularly
complex in all its details. Thus to make progress it is standard to simplify until you can get
a handle on at least the aspects of the system that you would like to study. As a result, it is
extremely valuable for astrophysicists to have the ability to make quick estimates of effects
(often called order of magnitude calculations) to see whether something might be important,
before settling down to the more involved task of doing the detailed work to pursue an idea.
This also means that instead of simply solving a problem, you need to decide in advance
what you want to get out of your study before you determine what approach to use.

Let me give two examples. The first is that you are presented with a filled water tank
that is 97 cm high, 103 ¢cm wide, and 109 ¢cm long. Suppose you are asked to compute the
mass of the water in the tank to the nearest gram. Your approach might initially be to
multiply 97 by 103 by 109 to get the volume in cm® and then use 1 g cm™ as the density
of water to get the mass in grams. But on further thought you should realize that the
density of water isn’t ezactly 1 g cm™ in all circumstances; for example, it depends a bit on
the temperature of the water and on the local atmospheric pressure. Thus to answer this
question about the tank to the desired precision you would need to have extra information
and would need to do quite a detailed calculation.

But suppose instead you were asked whether you personally could, using only your own
muscles on Earth, lift the tank over your head. Since the volume of the tank is roughly
100 cm by 100 ¢cm by 100 cm, or about a million cubic centimeters, and that volume of water
has a mass of about a ton, the answer is no! You don’t need to go into details in that case.



For the second example, let’s draw something from astronomy. If I asked you to solve
the Sun, you would quite properly look blankly at me, because there are many aspects of
our observations of the Sun that aren’t yet explained. So I'll be more specific: I ask you to
note that the Sun has not been twice its current size, or half its current size, at any point in
your life. Can you explain that? First you’d need to understand that there is something to
explain; you could come to this understanding by doing a quick free-fall calculation to see
that if nothing were holding the Sun up, it would collapse in about an hour. This is much
less than your lifetime, so now you realize that you have to determine what holds the Sun
up. For this purpose, you might start by assuming that the Sun is a sphere, and guess that
gradients of gas pressure hold up the Sun. Of course, the Sun is not a perfect sphere, and
other things help hold it up, but you’d find that this is a pretty good approximation. Such
a calculation would take a few minutes if you knew the direction to pursue.

In contrast, if I ask you to explain all the details of the magnetic structure of the Sun,
you (and a few hundred colleagues) would work your career on this and still not get a full
solution! I hope that these examples make clear that your approach to an astrophysical
problem should depend on the level of accuracy you need.

Another general point to make relates to the process of creativity. Linus Pauling said
“The way to get good ideas is to get lots of ideas and throw the bad ones away”. So what
can we do about this in practice? My experience suggests that when you are trying to come
up with ideas, it is helpful to separate the process into two steps:

1. Brainstorming.

2. Critical evaluation.

In the brainstorming step, you just think of ideas and put them on a list, without trying
to assess at that point whether they are reasonable. In the critical evaluation step, you
become your own harshest critic: what are the holes or flaws in each idea you just listed?
Can you cleanly rule out any of them and thus take them off the list? Are any of the
remainder really promising? Using this approach you don’t miss genuinely creative solutions
but, at the same time, you remain grounded in reality. A trap to avoid, which I have seen
claim many astrophysicists (including well-known ones), is to fall deeply, madly in love with
your own idea. In such a state, you will ignore counterarguments and evidence against your
idea. That’s really bad. It is your responsibility, as a scientist, to try to think of arguments
against your own ideas and to be honest about them. That’s the way that science can
progress most smoothly; for myself, I can tell you that I have extra respect for scientists who
will tell me of possible weaknesses in their ideas, because I feel that I can trust them more
and have a productive dialog with them.

You can get some practice in the brainstorming—critical evaluation path by trying to



think of the fundamental power source of the Sun. You probably know that it is actually
nuclear fusion, but suppose you didn’t know that. List some sources; fusion would be on
there, as would normal chemical energy (burning). How many more can you think of 7 After
you have a full list, take a break, then come back to rule them out. Note that when I say
above that you want to cleanly rule out possibilities, this often implies that you want to
make your arguments as simple as possible. For example, you can estimate the total amount
of energy that the Sun has produced so far in its lifetime. How does this compare with what
you’d get if the Sun were a ball of paper and you got energy by burning the paper? You’ll
find that paper burning falls short by orders of magnitude, so you can be convinced that
even slight variations in your calculations make little difference.

In contrast, if you tried to do something much more involved then the arguments would
become more complicated and therefore less convincing. For example, suppose that you
wanted to rule out the burning of paper by computing the detailed helioseismic oscillations
that the Sun would have if it were made of paper. Maybe you’d eventually get to a contra-
diction with observations, but it would take a long time and a huge effort, and it wouldn’t
be followed very easily by others! Simple checks are critical: are the units right? Are the
symmetries and limits right? There are published papers that are trivially disproven by
these simple checks; try to avoid having yours join that list!

The final point I'd like to make before we discuss the basics of gravitational wave sources
has to do with how you can improve your astrophysical intuition. Remember, part of the
idea is to be able to make quick assessments of ideas so that you can spend your time on the
most promising ones. How do you know what you can discard and what you should keep
for further analysis? I'd say that the best approach is to do various calculations for fun in
different circumstances to see what you can do. It even helps to do some sample detailed
calculations of processes that you know can’t be important, so that you get a sense of when
you can absolutely rule something out. For example, how strongly and simply can you rule
out the idea that the solar wind is largely driven by the scattering of solar neutrinos off of
electrons and nuclei?

You also can acquire high-level understanding of some processes and numbers that will
allow you to take shortcuts. For example, how fast would something orbit in a circle at a
distance of a parsec from the center of a globular cluster with a mass of 10> M,? You could
put in factors of G and the like, but if you know that (1) the Earth moves at 30 km s~ in its
1 AU orbit around a 1 M, object, (2) there are about 200,000 AU in one parsec, and (3) the
orbital speed scales as (M /r)Y/2, then you can see that the speed is (10°/2 x 10°)'/2 times
the Earth’s speed, or about 20 km s~!. Fast, high-level reasoning such as this also helps in
the informal scientific conversations that are essential to your career development.

To sum up this introductory part, astrophysics is tremendously fun to pursue, but for



those of you who (like me entering grad school) are used to exact analysis, you need to get
used to these techniques!

Overview of Gravitational Radiation

As direct detection of gravitational radiation draws nearer, it is useful to consider what
such detections will teach us about the universe. The first such detection, of course, will be
of immediate significance because it will be a direct confirmation of a dramatic prediction of
general relativity: to paraphrase John Wheeler, that spacetime tells sources how to move,
and moving sources tell spacetime how to ripple.

Beyond this first detection, gravitational wave detections will pass into the realm of
astronomy, and will give us new observational windows onto some of the most dynamic
phenomena in the universe. These include merging neutron stars and black holes, supernova
explosions, and possibly echoes from the very early history of the universe as a whole. They
are also anticipated to provide the cleanest tests of predictions of general relativity in the
realm of strong gravity.

However, there are important differences from standard astronomy. In electromagnetic
observations, in every waveband there are sources so strong that they can be detected even
if you know nothing about the source. You don’t need to understand nuclear fusion in order
to see the Sun! In contrast, as we will see, most of the expected sources of gravitational
radiation are so weak that sophisticated statistical techniques are required to detect them
at all. A standard technique involves matching templates of expected waveforms against the
observed data stream. Maximum sensitivity therefore requires a certain understanding of
what the sources look like, and thus of the characteristics of those sources. In addition, when
detections occur, it will be important to put them into an astrophysical context so that the
implications of the discoveries are evident.

During this summer school you will get a survey of many aspects of gravitational radi-
ation, from its generation to its detection. In this particular set of lectures, we will focus
on the anticipated sources. As an aside, it is useful to remember that historically the most
interesting sources discovered with a new telescope or satellite have often been unexpected,
and this is also possible with gravitational radiation. However, you can’t sell a large project
by appealing entirely to the unknown, so we should at least describe what we can imagine
at this point!

Before discussing types of sources, though, we need to have some general perspective on
how gravitational radiation is generated and how strong it is. We will begin by discussing
radiation in a general context.

By definition, a radiation field must be able to carry energy to infinity. If the amplitude
of the field a distance r from the source in the direction (0, ¢) is A(r, 6, ¢), the flux through a



spherical surface at r is F(r, 0, ¢) oc A%(r,0, ¢). If for simplicity we assume that the radiation
is spherically symmetric, A(r,0,¢) = A(r), this means that the luminosity at a distance r
is L(r) oc A%(r)4mr®. Note, though, that when one expands the static field of a source
in moments, the slowest-decreasing moment (the monopole) decreases like A(r) o 1/r?
which implies that L(r) o 1/r? and hence no energy is carried to infinity. This tells us
two things, regardless of the nature of the radiation (e.g., electromagnetic or gravitational).
First, radiation requires time variation of the source. Second, the amplitude must scale as
1/r far from the source.

We can now explore what types of variation will produce radiation. We’ll start with
electromagnetic radiation, and expand in moments. Suppose that we are far from some
distribution of electric charges, which could be in motion. For a charge density p.(r), the
monopole moment is [ p.(r)d*r. We assume that the volume over which we perform the
integral encompasses the entire system; no charges can enter or leave. As a result, the
monopole moment is simply the total charge ), which cannot vary, so there is no electro-
magnetic monopolar radiation. The next static moment is the dipole moment, [ p(r)rd®r.
There is no applicable conservation law, so electric dipole radiation is possible. One can also
look at the variation of currents. The lowest order such variation (the “magnetic dipole”) is
[ pe(r)r x v(r)d®r. Once again this can vary, so magnetic dipole radiation is possible. The
lower order moments will typically dominate the field unless their variation is reduced or
eliminated by some special symmetry.

Now consider gravitational radiation. Let the mass-energy density be p(r). The monopole
moment is [ p(r)d®r, which is simply the total mass-energy. This is constant, so there cannot
be monopolar gravitational radiation. The static dipole moment is [ p(r)rd®r. This, how-
ever, is just the center of mass-energy of the system. In the center of mass frame, therefore,
this moment does not change, so there cannot be electric dipolar radiation in this frame
(or any other, since the existence of radiation is frame-independent). The equivalent of the
magnetic dipolar moment is [ p(r)r x v(r)d®r. This, however, is simply the total angular
momentum of the system, so its conservation means that there is no magnetic dipolar grav-
itational radiation either. The next static moment is quadrupolar: I;; = [ p(r)r;r;d®r. This
is not conserved, and thus there can be quadrupolar gravitational radiation.

This allows us to draw general conclusions about the type of motion that can generate
gravitational radiation. A spherically symmetric variation is only monopolar, so it does not
produce radiation. No matter how violent an explosion (even a supernoval) or a collapse
(even into a black hole!), no gravitational radiation is emitted if spherical symmetry is
maintained. In addition, a rotation that preserves axisymmetry (without contraction or
expansion) does not generate gravitational radiation because the quadrupolar and higher
moments are unaltered. Therefore, for example, a neutron star can rotate arbitrarily rapidly
without emitting gravitational radiation as long as it maintains axisymmetry and rotates



around that axis.

This immediately allows us to focus on the most promising types of sources for gravita-
tional wave emission. The general categories are: binaries, continuous wave sources (e.g., ro-
tating stars with nonaxisymmetric lumps), bursts (e.g., asymmetric collapses), and stochas-
tic sources (i.e., individually unresolved sources with random phases; the most interesting
of these would be a background of gravitational waves from the early universe). We will
discuss each of these in subsequent lectures.

We can now make some order of magnitude estimates. What is the approximate ex-
pression for the dimensionless amplitude h of a metric perturbation, a distance r from a
source? Note, by the way, that because gravitational waves are perturbations in spacetime,
h is related to the fractional deviation of the spacetime from the Minkowski (flat) spacetime.
Thus h is of the order of the fractional change in length induced by a passing gravitational
wave, if the length in question is of order the gravitational wavelength.

We argued that the lowest order radiation has to be quadrupolar, and hence depends on
the quadrupole moment /. This moment is I;; = [ priyr;d®z, so it has dimensions M R?, where
M is some mass and R is a characteristic dimension. We also argued that the amplitude is
proportional to 1/r, so we have

h~MR?/r. (1)

We know that h is dimensionless, so how do we determine what else goes in here? In GR we
usually set G = ¢ = 1, which means that mass, distance, and time all have the same effective
“units”, but we can’t, for example, turn a distance squared into a distance. Our current
expression has effective units of distance squared (or mass squared, or time squared). We
note that time derivatives have to be involved, since a static system can’t emit anything.
Two time derivatives will cancel out the current units, so we now have

1 0*(M R?)

e 2)

Now what? To get back to physical units we have to restore factors of G and c. It is useful
to remember certain conversions: for example, if M is a mass, GM/c? has units of distance,
and GM/c® has units of time. Playing with this for a while gives finally

G 10*(MR?)

h cAr  Ot? ’ (3)

Since G is small and c is large, the prefactor is tiny! That tells us that unless M R? is large,
the system is changing fast, and r is small, the metric perturbation is minuscule.

Let’s make a very rough estimate for a circular binary. Suppose the total mass is
M = mj+ma, the reduced mass is u = mymy /M, and the semimajor axis is a, so the orbital
frequency Q is given by Q%a® = GM. Without worrying about precise factors, we say that



0?/0t? ~ Q? and M R? ~ pa?, so
h~ (G*/c")(p/r)(M/a) . (4)

This can also be written in terms of orbital periods, and with the correct factors put in we
get, for example, for an equal mass system

10 (M 53 70.01 sec\ * /100 Mpe 5
28M® P T ’

which is scaled to a double neutron star system. This is really, really, small: it corresponds
to less than the radius of an atomic nucleus over a baseline the size of the Earth. That’s
why it is so challenging to detect these systems!

Remarkably, though, the flux of energy is not tiny. To see this, let’s calculate the flux
given some dimensionless amplitude h. The flux has to be proportional to the square of the
amplitude and also the square of the frequency f: F ~ h?f2. This currently has units of
frequency squared, but the physical units of flux are energy per time per area. Replacing
factors of GG and ¢, we find that the flux is

F~ (GRS . (6)

Now the prefactor is enormous! For the double neutron star system above, with h ~ 10722
and f ~ 100 Hz, this gives a flux of a few hundredths of an erg cm™2 s~!. For comparison,
the flux from Sirius, the brightest star in the night sky, is about 107* erg cm=2 s~!! That
means that if you could somehow absorb gravitational radiation perfectly with your eyes,
you would see hundreds to thousands of events per year brighter than every star except the
Sun. What this really implies, of course, is that gravitational radiation interacts very weakly
with matter, which again means that it is mighty challenging to detect.

Let us conclude with an idea of the frequency range available for a given type of binary.
There is obviously no practical lower frequency limit (just increase the semimajor axis as
much as you want), but there is a strict upper limit. The two objects in the binary clearly
won’t produce a signal higher than the frequency at which they touch. If we consider an
object of mass M and radius R, the orbital frequency at its surface is ~ \/GM/R3. Noting
that M/R3 ~ p, we can say that the maximum frequency involving an object of density p
iS fumax ~ (Gp)'/2. This is actually more general than just orbital frequencies. For example,
a gravitationally bound object can’t rotate faster than that, because it would fly apart. In
addition, you can convince yourself that the frequency of a sound wave that involves most
of the object can’t be greater than ~ (Gp)/2. Therefore, this is a general upper bound on
dynamical frequencies.

This tells us, therefore, that binaries involving main sequence stars can’t have frequencies
greater than ~ 1073 —107% Hz, depending on mass, that binaries involving white dwarfs can’t



have frequencies greater than ~ 0.1 —few Hz, also depending on mass, that for neutron stars
the upper limit is ~ 1000 — 2000 Hz, and that for black holes the limit depends inversely
on mass (and also spin and orientation of the binary). In particular, for black holes the
maximum imaginable frequency is on the order of 10*(Mg /M) Hz at the event horizon, but
in reality the orbit becomes unstable at lower frequencies (more on that in the next lecture).

The net result is that for ground-based interferometers such as LIGO-India, which are
sensitive to frequencies ~ 10 — 2000 Hz, the only individual sources that will be detected are
neutron stars and black holes and their creation events (supernovae); some might argue that
cuspy cosmic strings might fall into this category, but we’ll leave that for a later discussion.
In the next two lectures we will therefore lay out the astrophysical basics of black holes and
neutron stars.



