
 Bayesian model selection
and

parameter estimation



 

Bayesian inference

Aim: use available data to

– Construct probability density distributions for parameters 

associated with these hypotheses       

 Parameter estimation

– Evaluate which out of several hypotheses is the most likely   

 Model selection

Do this while making explicit all extraneous assumptions

                

                                                   



 

Inductive logic

Propositions (i.e. statements, events) denoted by uppercase letters, 
e.g. A, B, C, …, X

Boolean algebra:

– Conjuction: A and B are both true

– Disjunction: At least one of A or B is true

– Negation: A is false

– Implication: From A follows B 

 

                

                                                   



 

Probabilities for propositions
Useful to view statements as sets which are subsets of a “Universe”

– Conjunction: intersection of sets 

– Disjunction: union of sets

– Negation: complement within Universe

Each of these sets have a probability associated with them

– If A ⊂ B then

– If A and B disjoint then 

• The Universe has probability 1, so that e.g.   

 

                

                                                   



 

Conditional probability

Conditional probability:

– Product rule: 

It is customary to explicitly denote probabilities being conditional 
on “all background information we have”:            ,            , ... 

– All essential formulae unaffected, e.g. product rule:

From the product rule follows Bayes' theorem:

     

                

                                                   



 

Marginalization

Note that for any A and B, 

                          and

are disjoint sets whose union is A, so  

Consider sets           such that

– They are disjoint:

– They are exhaustive:          is the Universe, or

Then

                                Marginalization rule

     

                

                                                   



 

Marginalization over a continuous variable

Consider the proposition                                                                 
“The continuous variable x has the value ”

Then not necessarily a well-defined meaning of probability

Instead assign probabilities to finite intervals: 

where “pdf” is the probability density function

– Exhaustiveness written as 

Marginalization for continuous variables:

     

                

                                                   



 

Parameter estimation
Experiment performed, data d collected

Parameter θ being measured

Consider a model H that allows to calculate probability of getting 
data d if parameter θ is known (“generative model”) 

– Can calculate the likelihood 

What is wanted is instead posterior probability of θ, 

Use Bayes' theorem:

– “Prior”              is our knowledge of θ before experiment

– “Evidence”               doesn't depend on θ, ignore for now  

     

                

                                                   



 

Parameter estimation

Posterior is likelihood weighted by prior        

Conclusions drawn based on: 

– Information available before experiment  

– Experimental data obtained

Can extend to more parameters: joint posterior 

If we want posterior distribution just for variable θ
1
,                   ,  

then we marginalize:           

     

                

                                                   



 

Mean of a 1D posterior:

Variance of a 1D posterior:  

Means for N variables: 

Covariance matrix:       

     

                

                                                   



 

Confidence interval is the smallest interval within whose limits a 
fraction γ of the posterior is contained:

where               is minimal

In most literature γ is taken to be 0.68 or 0.95, roughly 
corresponding to 1-sigma and 2-sigma intervals of Gaussian 
distribution

Multi-dimensional confidence intervals:

     

                

                                                   



 

Hypothesis testing
Estimating parameters is possible if generative model known

If we want to compare possible generative models, e.g. X, Y: 
calculate posterior probabilities

Bayes' theorem:    

Compute odds ratio

where factors of          have canceled out 

                       ratio of prior odds

                            ratio of evidences, or Bayes factor

     

                

                                                   



 

Hypothesis testing
Hypotheses usually have parameters associated with them

Bayes theorem relating posterior to likelihood:

or

Marginalize both sides over parameter(s):

Note that                independent of parameter(s), and posterior      
                  normalized by definition, hence left hand side: 

 

Therefore evidence is given by 

     

                

                                                   



 

Hypothesis testing
Odds ratio

Bayes factor

Marginalized evidences e.g. 

Hypotheses can have arbitrary number of free parameters

– Does model that fits data the best give the highest evidence?

– If so, model with more parameters would give highest 

evidence even if incorrect! 

     

                

                                                   



 

Occam's razor
For simplicity, compare two generative hypotheses:

– X has no free parameters

– Y has one free parameter, λ

Will Y automatically be favored over X?

Odds ratio

Evidence for X is straightforward, but for Y:

Assume flat prior for                        : 

     

                

                                                   



 

Occam's razor
Evidence for Y:

Flat prior:

For definiteness, assume likelihood of the form   

Evidence for Y:                    

                        

     

                

                                                   



 

Occam's razor
Evidence for Y:

Hence odds ratio becomes:

where

                     ratio of prior odds; can be set to 1 in this example

                             just compares best fits; will usually be < 1 

                                penalizes Y if experimental uncertainty on λ 
much smaller than prior range

– Will tend to be the case if λ not needed!

Occam's Razor:                                                                             

   “It is vain to do with more what can be done with fewer” 

 

                

                                                   



 

Likelihood principle
Suppose experiment with generative hypothesis H, corresponding 
set of N parameters θ, observed data d, and background 
information I

Then posterior of θ can be expressed using Bayes' theorem:

Only factor in RHS that depends on d and involves the θ is the 
likelihood

– The likelihood function                 contains all the 

information about the parameters θ that is present in 

the data

– Only need to focus on the likelihood 

 

                

                                                   



 

Nested sampling

Parameter estimation requires computing the posterior density 
distribution from likelihood and prior using Bayes' theorem:

Often the parameter space has high dimensionality (e.g. 15 for 
quasi-circular binary inspiral), making it computationally 
challenging to map out the likelihood 

Similarly calculation of evidence integral over high-dimensional 
space:

Efficient way of obtaining both: nested sampling

 

                

                                                   



 

Nested sampling: basic idea

Nested sampling computes the evidence by rewriting the above 
integration in terms of a single scalar called prior mass X

“Fraction of volume with likelihood greater than λ”                     
Mathematically:

Element of prior mass:

Since prior is normalized,

– Lower bound          :                                                     

surface within which no higher likelihood; 

– Upper bound          :                                                       

surface within which all points higher likelihood;    

 

                

                                                   



 

Nested sampling: basic idea

Rewrite as

Posterior obtained trivially from

Idea behind nested sampling: construct the function         by 
progressively finding locations in parameter space with higher 
likelihood and associated progressively smaller prior mass 

– Then use above formulae for evidence, posterior

 

                

                                                   



 

Nested sampling: schematically

                                                             

                      

     

                

                                                   



 

Nested sampling: the algorithm
Drop M samples across parameter space, sampled from the prior  
These are called “live points”

– Each has likelihood associated with it

– Associated with surface s.t. likelihood higher at boundary

– Uniformly sampled in prior mass between 0 and 1 

Discard sample with lowest likelihood L
0
, i.e. highest prior mass X

0

– Replace by new live point, sampled from the prior, which   

has with smaller likelihood

– New point with lowest likelihood L
1 
must have X

1 
< X

0

– Statistically assign value for X
1 

Repeat the step above

 

                

                                                   



 

Nested sampling: the algorithm
Having discarded the old highest-likelihood point with prior mass X

0
, 

how do we statistically assign a prior mass X
1
 to the new highest-

likelihood point?

Probability that the surface with highest prior mass is at X = χ is 
joint probability that none of the samples have prior mass > χ 

Probability density that highest of M samples has prior mass χ

Define shrinkage ratio between new and old highest prior mass:  

This has same probability density: 

Hence we assign X
1
 by drawing a shrinkage ratio from the above 

distribution

 

                

                                                   



 

Nested sampling
At first step: set X = 1
At kth iteration: live point with largest prior mass has  

Recall distribution of shrinkage ratios:

Mean and standard deviation of log(t):

Hence log(X
k
) has mean and stdev 

Hence mean values go like

- Very quickly reaches prior mass                                   
  where likelihood is largest
- Errors decrease exponentially
- Larger number of live points is better   

                

                                                   



 

Nested sampling: termination condition
No obvious choice for ending the sampling process

– Use practical guidelines

Estimate information as function of evidence and likelihood:

Terminate when

Or, can estimate amount of evidence yet to be accumulated and 

compare with evidence already accumulated

Terminate when                          where α is user-specified  

 

                

                                                   



 

Nested sampling: accuracy
Take termination condition

Means go like

“Terminate when count k exceeds      H”

Evidence:

Recall 

Hence uncertainty on the evidence:

In gravitational-wave applications, with a few thousand live points this is 
typically O(10-1) whereas for detectable signal logZ = O(102)

                

                                                   



 

Application to gravitational waves

Compute evidence for hypothesis that there is a signal in the data,        : 

Typical growth of        : usually convenient to consider logarithm
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