Tutorials 2: Gravitational wave signals as seen in a de-
tector

1. To leading post-Newtonian order, the evolution of the inspiral gravitational wave fre-

quency looks like
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where M = (my + my)~"/®(mymy)3/® is the chirp mass, and 7 = t. — ¢, with ¢ the time of
coalescence. Invert this to obtain 7( faw).

2. Inspiral signals roughly end at the frequency of last stable orbit (LSO), defined by
3
c

with M the total mass of the binary. Calculate how long the signal will be in the sensitive

frequency band of a detector, for the following cases:

e A typical binary neutron star inspiral with (m;,ms) = (1.4,1.4) My, and detector
lower frequency cut-offs of, respectively fiw = 40 Hz, 20 Hz, and 3 Hz. (The latter
could be appropriate for Einstein Telescope.)

e A typical binary black hole inspiral with (mq,ms) = (10, 10) My, and detector lower
frequency cut-off of fi,, = 40 Hz, 20 Hz, and 3 Hz.

e A supermassive binary black hole inspiral with (m;, my) = (10%,10%) M, and LISA’s
lower frequency cut-off of f,, = 107> Hz.

3. The number of wave cycles is
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where ,,;, is the time at which the signal enters the band, and %,,,« the time at which the
signal terminates. Using Eq. (0.1), rewrite this as a simple expression in terms of chirp
mass and lower frequency cut-off.

4. Using this expression, calculate the number of cycles in band for the same cases as in
problem 2 above.

5. The detector response to an inspiral signal is:
h(t) = F(0,6,%) hy(t) + Fx(0,0,7%) hy (1), (0.4)
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where to leading post-Newtonian order in amplitude we have

hy(t) = A(t) (1 + cos®(1)) cos(®(t)),

hy(t) = A(t)2 cos(t) sin(P(2)), (0.5)
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Show that one can write
B(t) = A(t) | F2(1 + cos(i))? + F24cos2(1) cos(®(t) + o) (0.7)
where F 2 cos(t)
— cos(t
= t X *
o = arctan (F+(1 n COS2(L))) (0.8)
6. For matched filtering we need the Fourier transform of the detector response:
h(f) = /dt h(t) &>t (0.9)

The stationary phase approximation is a simple but useful approximation of 71( f), which we
now derive in steps. First argue that

/th(t) cos(P(t) — @g) 2Tt ~ 56_“‘70 /th(t) ! ft=2(®) (0.10)

Explain why the largest contribution to the integral comes from the time ¢ = ¢, where
2 f = ®(ts(f)). Now Taylor expand the exponent in the integrand around tg:

o ft — B(t) ~ 27 ft, — DB(t,) — %cﬁ(ts) (t—t)? +... (0.11)

Keeping only terms up to quadratic order, show that
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It is known that -
/ doe ™ = /me /4, (0.13)

so that finally
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where

U(f) = 20 ft(f) — D)) — /4. (0.15)
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7. Using Eq. (0.1), derive leading-order expressions for ®(t) and ®(t) as well as t(f). With
the results (0.14), (0.15), using (0.6), and reinstating the angle-dependent prefactor, show
that
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8. Show that in the stationary phase approximation, the optimal signal-to-noise ratio (SNR)
takes the form
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Using the expressions in the lecture slides for F (0, ¢,1) and Fy (0, ¢,1), make plots to
explore the dependence of p on the sky position and orientation of the binary.

p:

9. For a given distance, which sky position and orientation of the binary leads to the
highest SNR, and what does the expression (0.17) reduce to in this case? Optional because
laborious: show that if (-) denotes the average over both the sky position (6, ¢) and the

orientation (¢, ¢),
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so that

10. Show that given a minimum SNR py needed for detection, the “angle-averaged” distance
reach of a detector is:
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11. You will have received a sensitivity curve for LIGO-India at design sensitivity. Write
code to numerically evaluate the integral

Fnes f77/3 d 0.21
/f s (0-21)

Then, for a minimum SNR of py = 8, make a 3D plot of Dayeraged as a function of component
masses m; and mo, in the mass regime of interest for binaries consisting of neutron stars
and/or stellar mass black holes.




