Tutorials 2: Gravitational wave signals as seen in a detector

1. To leading post-Newtonian order, the evolution of the inspiral gravitational wave frequency looks like

$$
\begin{equation*}
f_{\mathrm{gw}}(\tau)=\frac{1}{\pi}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{-5 / 8}\left(\frac{5}{256} \frac{1}{\tau}\right)^{3 / 8} \tag{0.1}
\end{equation*}
$$

where $\mathcal{M}=\left(m_{1}+m_{2}\right)^{-1 / 5}\left(m_{1} m_{2}\right)^{3 / 5}$ is the chirp mass, and $\tau=t_{c}-t$, with t the time of coalescence. Invert this to obtain $\tau\left(f_{\text {gw }}\right)$.
2. Inspiral signals roughly end at the frequency of last stable orbit (LSO), defined by

$$
\begin{equation*}
f_{\mathrm{LSO}}=\frac{c^{3}}{6^{3 / 2} \pi G M}, \tag{0.2}
\end{equation*}
$$

with M the total mass of the binary. Calculate how long the signal will be in the sensitive frequency band of a detector, for the following cases:

- A typical binary neutron star inspiral with $\left(m_{1}, m_{2}\right)=(1.4,1.4) M_{\odot}$, and detector lower frequency cut-offs of, respectively $f_{\text {low }}=40 \mathrm{~Hz}, 20 \mathrm{~Hz}$, and 3 Hz . (The latter could be appropriate for Einstein Telescope.)
- A typical binary black hole inspiral with $\left(m_{1}, m_{2}\right)=(10,10) M_{\odot}$, and detector lower frequency cut-off of $f_{\text {low }}=40 \mathrm{~Hz}, 20 \mathrm{~Hz}$, and 3 Hz .
- A supermassive binary black hole inspiral with $\left(m_{1}, m_{2}\right)=\left(10^{6}, 10^{6}\right) M_{\odot}$ and LISA's lower frequency cut-off of $f_{\text {low }}=10^{-5} \mathrm{~Hz}$.

3. The number of wave cycles is

$$
\begin{equation*}
N_{\mathrm{cyc}}=\int_{t_{\min }}^{t_{\max }} f_{\mathrm{gw}} d t, \tag{0.3}
\end{equation*}
$$

where $t_{\min }$ is the time at which the signal enters the band, and $t_{\max }$ the time at which the signal terminates. Using Eq. (0.1), rewrite this as a simple expression in terms of chirp mass and lower frequency cut-off.
4. Using this expression, calculate the number of cycles in band for the same cases as in problem 2 above.
5. The detector response to an inspiral signal is:

$$
\begin{equation*}
h(t)=F_{+}(\theta, \phi, \psi) h_{+}(t)+F_{\times}(\theta, \phi, \psi) h_{\times}(t), \tag{0.4}
\end{equation*}
$$

where to leading post-Newtonian order in amplitude we have

$$
\begin{align*}
& h_{+}(t)=A(t)\left(1+\cos ^{2}(\iota)\right) \cos (\Phi(t)), \\
& h_{\times}(t)=A(t) 2 \cos (\iota) \sin (\Phi(t)), \tag{0.5}
\end{align*}
$$

with

$$
\begin{equation*}
A(t)=\frac{4}{D}\left(\frac{G \mathcal{M}}{c^{2}}\right)^{5 / 3}\left(\frac{\pi f_{\mathrm{gw}}(t)}{c}\right)^{2 / 3} \tag{0.6}
\end{equation*}
$$

Show that one can write

$$
\begin{equation*}
h(t)=A(t) \sqrt{F_{+}^{2}\left(1+\cos ^{2}(i)\right)^{2}+F_{\times}^{2} 4 \cos ^{2}(\iota)} \cos \left(\Phi(t)+\varphi_{0}\right) \tag{0.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{0}=\arctan \left(\frac{-F_{\times} 2 \cos (\iota)}{F_{+}\left(1+\cos ^{2}(\iota)\right)}\right) \tag{0.8}
\end{equation*}
$$

6. For matched filtering we need the Fourier transform of the detector response:

$$
\begin{equation*}
\tilde{h}(f)=\int d t h(t) e^{2 \pi i f t} \tag{0.9}
\end{equation*}
$$

The stationary phase approximation is a simple but useful approximation of $\tilde{h}(f)$, which we now derive in steps. First argue that

$$
\begin{equation*}
\int d t A(t) \cos \left(\Phi(t)-\varphi_{0}\right) e^{2 \pi i f t} \simeq \frac{1}{2} e^{-i \varphi_{0}} \int d t A(t) e^{i(2 \pi f t-\Phi(t))} . \tag{0.10}
\end{equation*}
$$

Explain why the largest contribution to the integral comes from the time $t=t_{s}$ where $2 \pi f=\dot{\Phi}\left(t_{s}(f)\right)$. Now Taylor expand the exponent in the integrand around t_{s} :

$$
\begin{equation*}
2 \pi f t-\Phi(t) \simeq 2 \pi f t_{s}-\Phi\left(t_{s}\right)-\frac{1}{2} \ddot{\Phi}\left(t_{s}\right)\left(t-t_{s}\right)^{2}+\ldots \tag{0.11}
\end{equation*}
$$

Keeping only terms up to quadratic order, show that

$$
\begin{align*}
& \int d t A(t) \cos \left(\Phi(t)-\varphi_{0}\right) e^{2 \pi i f t} \\
& \simeq \frac{1}{2} A\left(t_{s}(f)\right) e^{-i \varphi_{0}} e^{i\left(2 \pi f t_{s}(f)-\Phi\left(t_{s}(f)\right)\right)}\left(\frac{2}{\tilde{\Phi}\left(t_{s}(f)\right)}\right)^{1 / 2} \int_{-\infty}^{\infty} d x e^{-i x^{2}} . \tag{0.12}
\end{align*}
$$

It is known that

$$
\begin{equation*}
\int_{-\infty}^{\infty} d x e^{-i x^{2}}=\sqrt{\pi} e^{-i \pi / 4} \tag{0.13}
\end{equation*}
$$

so that finally

$$
\begin{equation*}
\int d t A(t) \cos \left(\Phi(t)-\varphi_{0}\right) e^{2 \pi i f t} \simeq \frac{\sqrt{\pi}}{2} A(t(f)) e^{-i \varphi_{0}}\left(\frac{2}{\ddot{\Phi}\left(t_{s}(f)\right)}\right)^{1 / 2} e^{i \Psi(f)} \tag{0.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(f)=2 \pi f t(f)-\Phi(t(f))-\pi / 4 . \tag{0.15}
\end{equation*}
$$

7. Using Eq. (0.1), derive leading-order expressions for $\Phi(t)$ and $\ddot{\Phi}(t)$ as well as $t(f)$. With the results $(0.14),(0.15)$, using (0.6), and reinstating the angle-dependent prefactor, show that

$$
\begin{align*}
\tilde{h}(f) \simeq & \sqrt{F_{+}^{2}\left(1+\cos ^{2}(i)\right)^{2}+F_{\times}^{2} 4 \cos ^{2}(\iota)} \sqrt{\frac{5 \pi}{96}}(\pi f)^{-7 / 6} \frac{c}{D}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{5 / 6} \\
& \times \exp \left[i\left(2 \pi f t_{c}-\Phi_{c}+\frac{3}{4}\left(\frac{G \mathcal{M} f}{c^{3}}\right)^{-5 / 3}-\varphi_{0}-\pi / 4\right)\right] \tag{0.16}
\end{align*}
$$

8. Show that in the stationary phase approximation, the optimal signal-to-noise ratio (SNR) takes the form

$$
\begin{equation*}
\rho=\left[\left(F_{+}^{2}\left(1+\cos ^{2}(i)\right)^{2}+F_{\times}^{2} 4 \cos ^{2}(\iota)\right) \frac{5 \pi}{24} \pi^{-7 / 3} \frac{c^{2}}{D^{2}}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{5 / 3} \int_{f_{\min }}^{f_{\max }} \frac{f^{-7 / 3}}{S_{n}(f)} d f\right]^{1 / 2} \tag{0.17}
\end{equation*}
$$

Using the expressions in the lecture slides for $F_{+}(\theta, \phi, \psi)$ and $F_{\times}(\theta, \phi, \psi)$, make plots to explore the dependence of ρ on the sky position and orientation of the binary.
9. For a given distance, which sky position and orientation of the binary leads to the highest SNR, and what does the expression (0.17) reduce to in this case? Optional because laborious: show that if $\langle\cdot\rangle$ denotes the average over both the sky position (θ, ϕ) and the orientation (ι, ϕ),

$$
\begin{equation*}
\left\langle F_{+}^{2}\left(\frac{1+\cos ^{2}(\iota)}{2}\right)^{2}+F_{\times}^{2} \cos ^{2}(\iota)\right\rangle=\frac{4}{25} \tag{0.18}
\end{equation*}
$$

so that

$$
\begin{equation*}
\rho_{\text {averaged }}=\frac{2}{5} \rho_{\text {highest }} \tag{0.19}
\end{equation*}
$$

10. Show that given a minimum $\operatorname{SNR} \rho_{0}$ needed for detection, the "angle-averaged" distance reach of a detector is:

$$
\begin{equation*}
D_{\text {averaged }}=\frac{2}{5}\left[\frac{5 \pi}{6} \pi^{-7 / 3} c^{2}\left(\frac{G \mathcal{M}}{c^{3}}\right)^{5 / 3} \int_{f_{\min }}^{f_{\max }} \frac{f^{-7 / 3}}{S_{n}(f)} d f\right]^{1 / 2} \rho_{0}^{-1} \tag{0.20}
\end{equation*}
$$

11. You will have received a sensitivity curve for LIGO-India at design sensitivity. Write code to numerically evaluate the integral

$$
\begin{equation*}
\int_{f_{\min }}^{f_{\max }} \frac{f^{-7 / 3}}{S_{n}(f)} d f \tag{0.21}
\end{equation*}
$$

Then, for a minimum SNR of $\rho_{0}=8$, make a 3 D plot of $D_{\text {averaged }}$ as a function of component masses m_{1} and m_{2}, in the mass regime of interest for binaries consisting of neutron stars and/or stellar mass black holes.

