S. G. DANI'S WORK ON HOMOGENEOUS DYNAMICS

Anish Ghosh

Tata Institute of Fundamental Research

18/11/2017

► S. G. Dani has written over 111 papers

S. G. Dani has written over 111 papers

► The majority of them are on the subject of *homogeneous dynamics*

- S. G. Dani has written over 111 papers
- > The majority of them are on the subject of *homogeneous dynamics*
- ► To which he has made fundamental, lasting contributions

- S. G. Dani has written over 111 papers
- > The majority of them are on the subject of *homogeneous dynamics*
- > To which he has made fundamental, lasting contributions
- Recent trends in ergodic theory and dynamical systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015

- S. G. Dani has written over 111 papers
- > The majority of them are on the subject of *homogeneous dynamics*
- > To which he has made fundamental, lasting contributions
- Recent trends in ergodic theory and dynamical systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015
- Dave Witte Morris, Dani's work on dynamical systems on homogeneous spaces

- S. G. Dani has written over 111 papers
- > The majority of them are on the subject of *homogeneous dynamics*
- To which he has made fundamental, lasting contributions
- Recent trends in ergodic theory and dynamical systems, Contemp. Math., 631, Amer. Math. Soc., Providence, RI, 2015
- Dave Witte Morris, Dani's work on dynamical systems on homogeneous spaces
- François Ledrappier and Riddhi Shah, Dani's work on probability measures on groups

• G a Lie group, Γ a lattice in G, H a closed subgroup of G

- G a Lie group, Γ a lattice in G, H a closed subgroup of G
- The H action on G/Γ by translation gives rise to a dynamical system

- G a Lie group, Γ a lattice in G, H a closed subgroup of G
- The H action on G/Γ by translation gives rise to a dynamical system
- ► Examples: the geodesic and horocycle flows on the modular surface

- G a Lie group, Γ a lattice in G, H a closed subgroup of G
- The H action on G/Γ by translation gives rise to a dynamical system
- Examples: the geodesic and horocycle flows on the modular surface
- These form a very rich class of dynamical systems

- G a Lie group, Γ a lattice in G, H a closed subgroup of G
- The H action on G/Γ by translation gives rise to a dynamical system
- Examples: the geodesic and horocycle flows on the modular surface
- These form a very rich class of dynamical systems
- ► With extensive connections to number theory and geometry

A one-parameter subgroup {u_t} of SL(n, ℝ) is said to be unipotent if 1 is the only eigenvalue of u_t for every t ∈ ℝ.

- A one-parameter subgroup {u_t} of SL(n, ℝ) is said to be unipotent if 1 is the only eigenvalue of u_t for every t ∈ ℝ.
- Unipotent flows on homogeneous spaces are a surprisingly well behaved class of dynamical systems

- A one-parameter subgroup {u_t} of SL(n, ℝ) is said to be unipotent if 1 is the only eigenvalue of u_t for every t ∈ ℝ.
- Unipotent flows on homogeneous spaces are a surprisingly well behaved class of dynamical systems
- Furstenberg (73): Let G = SL(2, ℝ) and Γ be a cocompact lattice in G

- A one-parameter subgroup {u_t} of SL(n, ℝ) is said to be unipotent if 1 is the only eigenvalue of u_t for every t ∈ ℝ.
- Unipotent flows on homogeneous spaces are a surprisingly well behaved class of dynamical systems
- Furstenberg (73): Let G = SL(2, ℝ) and Γ be a cocompact lattice in G
- ► Then the horocycle flow is *uniquely ergodic*

- A one-parameter subgroup {u_t} of SL(n, ℝ) is said to be unipotent if 1 is the only eigenvalue of u_t for every t ∈ ℝ.
- Unipotent flows on homogeneous spaces are a surprisingly well behaved class of dynamical systems
- Furstenberg (73): Let G = SL(2, ℝ) and Γ be a cocompact lattice in G
- Then the horocycle flow is *uniquely ergodic*
- ▶ Dani (82): Dense orbits of unipotent flows equidistribute on SL(2, ℝ)/SL(2, ℤ)

 Dani (78): Classification of ergodic invariant probability measures for actions of maximal horospherical flows on G/Γ

- Dani (78): Classification of ergodic invariant probability measures for actions of maximal horospherical flows on G/Γ
- ► Where G is any reductive Lie group such that all noncompact simple factors are of ℝ-rank 1

- Dani (78): Classification of ergodic invariant probability measures for actions of maximal horospherical flows on G/Γ
- Where G is any reductive Lie group such that all noncompact simple factors are of ℝ-rank 1
- Every such measure is the natural Lebesgue measure on some finite-volume homogeneous space

- Dani (78): Classification of ergodic invariant probability measures for actions of maximal horospherical flows on G/Γ
- Where G is any reductive Lie group such that all noncompact simple factors are of ℝ-rank 1
- Every such measure is the natural Lebesgue measure on some finite-volume homogeneous space
- Dani's measure conjecture: this continues to hold in much greater generality for unipotent flows on G/Γ

- Dani (78): Classification of ergodic invariant probability measures for actions of maximal horospherical flows on G/Γ
- Where G is any reductive Lie group such that all noncompact simple factors are of ℝ-rank 1
- Every such measure is the natural Lebesgue measure on some finite-volume homogeneous space
- Dani's measure conjecture: this continues to hold in much greater generality for unipotent flows on G/Γ
- Raghunathan's topological conjecture (appears in print in a paper of Dani): The closure of every u_t-orbit on G/Γ is a finite-volume homogeneous space

Many significant advances by Dani

- Many significant advances by Dani
- ▶ Dani (horospherical groups, 81, 86), Dani-Smillie, Dani-Raghavan, Dani-Margulis (SL(3, ℝ), generic u_t)

- Many significant advances by Dani
- ▶ Dani (horospherical groups, 81, 86), Dani-Smillie, Dani-Raghavan, Dani-Margulis (SL(3, ℝ), generic u_t)
- Resolved in full generality by M. Ratner in 90-91

- Many significant advances by Dani
- ▶ Dani (horospherical groups, 81, 86), Dani-Smillie, Dani-Raghavan, Dani-Margulis (SL(3, ℝ), generic u_t)
- Resolved in full generality by M. Ratner in 90-91
- Dani's work on unipotent flows is very influential

- Many significant advances by Dani
- ▶ Dani (horospherical groups, 81, 86), Dani-Smillie, Dani-Raghavan, Dani-Margulis (SL(3, ℝ), generic ut)
- Resolved in full generality by M. Ratner in 90-91
- Dani's work on unipotent flows is very influential
- For example, the *linearization* technique introduced by Dani-Margulis is a fundamental and widely used tool

Orbits of flows and number theory

Ergod. Th. & Dynam. Sys. (1986), 6, 167-182 Printed in Great Britain

On orbits of unipotent flows on homogeneous spaces, II

S.G. DANI

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India

(Received 7 March 1985)

Abtract. We show that if (u_i) is a one-parameter subgroup of SL(n, R) consisting of unjocent matrices, then for any e>0 there exists a compact subset K of SL(n, R)/SL(n, Z) such that the following holds: for any ge SL(n, R) either (n(e1, C) 1(ge SL(n, Z) exist)) (-1e+7) for all large T (m being the Lebesgue measure) or there exists a non-trivial (g⁻¹ug)-invariant subspace defined by rational equations.

Similar results are deduced for orbits of unipotent flows on other homogeneous spaces. We also conclude that if G is a connected semisinple Lie group and Γ is a lattice in G then there exists a compact subset D of G such that for any closed connected unipotent subgroup U, which is not contained in any proper closed subgroup of G, we have G = DTU. The decomposition is applied to get results on Diophantice approximation.

0. Introduction

Let (u) be a one-parameter subgroup in SL (c, R) consisting of unipotent matrices. In [3], strengthering a result of C A. Margulia [10], iv was proved that for any x $\epsilon \le L$, (R)/SL (n, Z) there exits a compact set K such that the set ($\tau \ge 0 | u_k < K$) has positive blower density. Recently while studying density of orbits of horosopherical flows (cf. [7]) the author found that in certain contexts it is necessary to know whether the compact set K can be chosen so that the above assertion holds (simultancously) for all X such that the (u_k)-orbit of X is not contained in a prograded subgroup.

On the other hand in [6] is was proved that if G is a simple Lie group of R-rank 1 and Γ is a lattice in G then given $\epsilon > 0$ and a unipotent one-parameter subgroup (u_i) there exists a compact subset K of G/ Γ such that for any $x \in G/\Gamma$ whose (u_i) -orbit is unbounded the lower density of $\{r \ge 0 \mid u_i x \in X\}$ exceeds $(1 - \epsilon)$. This rises the question of whether a similar stronger assertion about the lower density is possible in the above-mentioned case (and more generally for all arithmetic lattice).

The answers to both the questions turn out to be in the affirmative; namely, we

Divergent trajectories of flows on homogeneous spaces and Diophantine approximation

By S. G. Dani*) at Bombay

Let O be a connected Lie group and Γ be a lattice in G, that is, Γ is a dimetre subgroup of G such that GG' subma in fattors (downsame measure, it $G_{1,m,k}$ et a scatter G_{1,m,k

In this paper we assume G/Γ to be non-compact and investigate a special class of such exceptional trajectories: 'divergent' trajectories. A trajectory is said to be divergent if eventually it leaves every compact subset of G/Γ (cf. § 1 for precise definition). In §§ 2 and 3 we also get some results on bounded trajectories of certain flows.

It was proved by 0. A. Maraphia in (21) that if G = 3L(a, b) and I = 5L(a, b)and $I \leq 1$ as one-parameter subgroup consisting of unipotent dimension than the area one dimension theorem in (21) in a strength reading. As if if the subscription is the strength is the strength of the strength is the strength of the 3 the strength of the 3 the subscredut of the strength of the strength of the strength of the strength of the 3 the subscredut of the strength of the strength

diag
$$(e^{-t}, ..., e^{-t}, e^{\lambda t}, ..., e^{\lambda t})$$
,

28/52

• A vector x is badly approximable if there exists c(x) > 0 if for all p/q

- A vector x is badly approximable if there exists c(x) > 0 if for all p/q
- $|x p/a| \ge c(x)/q^n$

- A vector x is badly approximable if there exists c(x) > 0 if for all p/q
- $|x p/a| \ge c(x)/q^n$
- ► Zero Lebesgue measure, full Hausdorff dimension

- A vector x is badly approximable if there exists c(x) > 0 if for all p/q
- $|x p/a| \ge c(x)/q^n$
- Zero Lebesgue measure, full Hausdorff dimension

• Dani: let
$$u_x = \begin{pmatrix} 1 & x \\ 0 & I_{n \times n} \end{pmatrix}$$
 and $g_t = \text{diag}(e^{nt}, e^{-t}, \dots, e^{-t})$

A vector x is badly approximable if there exists c(x) > 0 if for all p/q

$$|x - p/a| \ge c(x)/q^n$$

Zero Lebesgue measure, full Hausdorff dimension

• Dani: let
$$u_x = \begin{pmatrix} 1 & x \\ 0 & I_{n \times n} \end{pmatrix}$$
 and $g_t = \text{diag}(e^{nt}, e^{-t}, \dots, e^{-t})$

➤ x is badly approximable if and only if g_tu_xZⁿ⁺¹ is bounded in SL(n+1, ℝ)/SL(n+1, ℤ)

A vector x is badly approximable if there exists c(x) > 0 if for all p/q

$$|x - p/a| \ge c(x)/q^n$$

Zero Lebesgue measure, full Hausdorff dimension

• Dani: let
$$u_x = \begin{pmatrix} 1 & x \\ 0 & I_{n \times n} \end{pmatrix}$$
 and $g_t = \text{diag}(e^{nt}, e^{-t}, \dots, e^{-t})$

- ➤ x is badly approximable if and only if g_tu_xZⁿ⁺¹ is bounded in SL(n+1, ℝ)/SL(n+1, ℤ)
- "Dani correspondence" translates Diophantine properties into dynamics on G/Γ. Kleinbock-Margulis and many many others

► Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ

- Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ
- And introduced games into homogeneous dynamics

- Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ
- And introduced games into homogeneous dynamics
- ► Kleinbock-Margulis, Kleinbock, Kleinbock-Weiss,

- Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ
- And introduced games into homogeneous dynamics
- Kleinbock-Margulis, Kleinbock, Kleinbock-Weiss,
- ► McMullen: "absolute" and "strong" versions of the game

- ► Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ
- And introduced games into homogeneous dynamics
- Kleinbock-Margulis, Kleinbock, Kleinbock-Weiss,
- McMullen: "absolute" and "strong" versions of the game
- ► Significant and ongoing developments in recent years

- Dani used the Schmidt game to prove the abundance of bounded orbits on certain G/Γ
- And introduced games into homogeneous dynamics
- Kleinbock-Margulis, Kleinbock, Kleinbock-Weiss,
- McMullen: "absolute" and "strong" versions of the game
- Significant and ongoing developments in recent years
- Dani: the set of points on a torus whose forward orbit under a semisimple surjective endomorphism does not contain an element of finite order is winning

For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has

- For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has
- $\bullet |\{x \in [0, T] : \delta(u_x \Lambda) < \varepsilon\}| \le cT$

- For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has
- $|\{x \in [0, T] : \delta(u_x \Lambda) < \varepsilon\}| \le cT$
- Quantitative improvement of a result of Margulis

For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has

$$|\{x \in [0, T] : \delta(u_x \Lambda) < \varepsilon\}| \le cT$$

- Quantitative improvement of a result of Margulis
- Extremely useful. Dani: any locally finite ergodic u_t-invariant measure on G/Γ is finite. Margulis: new proof of Borel-Harish Chandra theorem

- For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has
- $|\{x \in [0, T] : \delta(u_x \Lambda) < \varepsilon\}| \le cT$
- Quantitative improvement of a result of Margulis
- Extremely useful. Dani: any locally finite ergodic u_t-invariant measure on G/Γ is finite. Margulis: new proof of Borel-Harish Chandra theorem
- Kleinbock-Margulis used a refinement of Dani's result to settle a long open conjecture in Diophantine approximation

- For any c > 0 and any lattice Λ in ℝ^k there exists ε > 0 such that for any unipotent subgroup {u_x : x ∈ ℝ} of SL(k, ℝ) one has
- $|\{x \in [0, T] : \delta(u_x \Lambda) < \varepsilon\}| \le cT$
- Quantitative improvement of a result of Margulis
- Extremely useful. Dani: any locally finite ergodic u_t-invariant measure on G/Γ is finite. Margulis: new proof of Borel-Harish Chandra theorem
- Kleinbock-Margulis used a refinement of Dani's result to settle a long open conjecture in Diophantine approximation
- Shah, Eskin-Mozes-Shah, Minsky-Weiss, Lindenstrauss-Mirzakhani

• Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational

- ▶ Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational
- ▶ Oppenheim's conjecture (1930's): $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}

- ▶ Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational
- ▶ Oppenheim's conjecture (1930's): $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}
- ► G. Margulis proves the conjecture in 1986. Dani has many significant contributions

- ▶ Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational
- Oppenheim's conjecture (1930's): $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}
- G. Margulis proves the conjecture in 1986. Dani has many significant contributions
- Dani-Margulis: density for primitive vectors, simultaneous approximation. Dani: density for a pair consisting of a linear form and a quadratic form

- ▶ Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational
- Oppenheim's conjecture (1930's): $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}
- G. Margulis proves the conjecture in 1986. Dani has many significant contributions
- Dani-Margulis: density for primitive vectors, simultaneous approximation. Dani: density for a pair consisting of a linear form and a quadratic form
- Dani-Margulis: lower bounds for quantitative Oppenheim. The "linearization" paper

- ▶ Q a quadratic form in $n \ge 3$ variables, indefinite, nondegenerate, irrational
- Oppenheim's conjecture (1930's): $Q(\mathbb{Z}^n)$ is dense in \mathbb{R}
- G. Margulis proves the conjecture in 1986. Dani has many significant contributions
- Dani-Margulis: density for primitive vectors, simultaneous approximation. Dani: density for a pair consisting of a linear form and a quadratic form
- Dani-Margulis: lower bounds for quantitative Oppenheim. The "linearization" paper
- "Elementary" proof