Status and perspectives of FAIR and NUSTAR

J. Gerl

GSI – Darmstadt, Germany

ANUP11

ICTS Goa, India, November 7, 2011

FAIR – The Facility

Key Technical Features

- Cooled beams
- Rapidly cycling superconducting magnets

Primary Beams

- •10¹²/s; 1.5-2 GeV/u; ²³⁶U²⁸⁺
- •Factor 100-1000 over present in intensity
- •2(4)x1013/s 30 GeV protons
- 10¹⁰/s ²³⁸U⁷³⁺ up to 25 (- 35) GeV/u

Secondary Beams

- Broad range of radioactive beams up to 1.5 - 2 GeV/u; up to factor 10 000 in intensity over present
- •Antiprotons 3 30 GeV

Storage and Cooler Rings

- Radioactive beams
- •e A collider
- *10¹¹ stored and cooled 0.8 14.5 GeV antiprotons

FAIR – The Science

Plasma Physics with highly Bunched Beams Bulk matter at very high pressures, densities, and temperatures Atomic Physics and Applied Science Highly charged atoms; Low energy anti-protons Laser cooling

ANUP11 - JG

Nuclear Structure Physics and Nuclear Astrophysics with RIBs

Structure of exotic nuclei far off stability; Nuclear synthesis in stars and star explosions; Fundamental interactions and symmetries

Hadron Physics with Antiproton Beams

Quark gluon structure and dynamics of "strong" interacting particles; Origin of the confinement and mass of hadrons

Transversity measurement via polarized antiprotons and pol. protons

Physics of Nuclear Matter with Relativistic Nuclear Collisions Studies of hadronic matter at high densities;

Phase transitions in quark matter; Properties of neutron stars

Development of Project Staging

2003	Recommendation by WissenschaftsRat – FAIR Realisation in three stages								
2005	Entire Facility Baseline Technical Report								
2007	Phase A								
2009	Module 0 SIS100	Module 1 expt areas CBM/HADES and APPA	Module 2 Super-FRS fixed target area NuSTAR	Module 3 pbar facility, incl. CR for PANDA, options for NuSTAR LEB in HEB	Module 4 LEB for NuSTAR, NESR for NuSTAR and APPA, FLAIR for APPA	Module 5 RESR P+ beam line nominal intensity for PANDA & parallel operation with NuSTAR and	Module 6 SIS300 BIOMAT Hall HESR cooler EC ring		
						APPA			

Signing the Application for the Building Permit

Construction applications have been submitted to the 13 building authorities in charge, on 31/8/2011 (1400 folders).

First two Test-Pillars Drilled and Casted

How the Construction of Buildings will Proceed?

Key Figures from Civil Construction

Туре			Mass (t)	Fraction
Sum			5.835.000	100%
Soil out	1.154.000	m3	2.077.200	36%
Soil in	1.078.000	m3	1.940.400	33%
Concrete	519.000	m3	1.283.400	22%
Steel for concrete	34.000	t	34.000	0,6%
Other	500.000	t	500.000	9%

In order to optimize time and costs logistics is an item -> professional construction logistics company is contracted

Digital Mock Up

All buildings, and existing accelerator and detector components included

Valuable tool for studying various details as collision-, installation-, service or maintenanceand space aspects.

NUclear STructure Astrophysics and Reactions

What are the limits for existence of nuclei?

Where are the proton and neutron drip lines situated?

Where does the nuclear chart end?

How does the nuclear force depend on varying proton-to-neutron ratios?

What is the isospin dependence of the spin-orbit force? How does shell structure change far away from stability?

How to explain collective phenomena from individual motion?

What are the phases, relevant degrees of freedom, and symmetries of the nuclear many-body system?

How are complex nuclei built from their basic constituents?

What is the effective nucleon-nucleon interaction?

How does QCD constrain its parameters?

Which are the nuclei relevant for astrophysical processes and what are their properties?

What is the origin of the heavy elements?

NUSTAR - The Project

DESPEC	γ-, β-, α-, p-, n-decay spectroscopy		The Approach	
ELISE	elastic, inelastic, and eA scattering	quasi-free	Complementary	
EXL	light-ion scattering rea invere kinematics	actions in	leading to consistent answers	
HISPEC	in-beam γ spectrosco intermediate energy	py at low and	The Collaboration	
ILIMA	masses and lifetimes	of nuclei in	> 900 scientists	
		lales	148 institutes 🗲 Data	base -
LASPEC	Laser spectroscopy		38 countries	
MATS	in-trap mass measurements and			
	decay studies		The Investment	
R3B	kinematically complet at high beam energy	e reactions	82 M€ Super FRS	
Super FRS	RIB production, identi	fication and	73 M€ Experiments	
	spectroscopy	ANUP11 - JG		-

from SIS18/SIS100 synchrotrons

The Super-FRS in Digital Mock Up

Superferric Dipole for the S-FRS

Magnetic flux: $B_{max} = 1.6 T @ I = 233 A$ (design value: I = 230 A)

Required field quality: DB/B = $\pm 3 \times 10^{-4}$ (over ± 190 mm, 5 mm steps)

- field quality tests successful
- quench tests successful
- no part of outer cryostat-wall $\leq 0^{\circ}$ C
- heat load @ 4.2 K \approx 5 W
- stored energy \approx 400 kJ

Production: CEA and CIEMAT as IKC

Heavy Ion tracking

HUS AR

GEM TPC development

Chevron shaped electrode

$$\sigma_{\rm x} \approx 400 \ \mu {
m m}$$
 $\sigma_{\rm y} \approx 300 \ \mu {
m m}$

B. Sitar(Bratislava)

More PMTs -> Cover more solid angle + Less "dead spots"

Ultra-Fast timing

Set-up: 32 PMTs on BC-420 CFDs+TDC (25ps/bin)

σ~15 ps

HISPEC Detector LYCCA in use

Position sensitive ∆E-E-ToF calorimeter Commissioned in 9.2011

In use since 10.2011

The MONSTER cells

The construction of the cells will be shared between Spain (CIEMAT, IFIC), India (VECC), Finland (Univ. of Jyvaskyla), Sweden (Univ. of Uppsala).

-CIEMAT + St. Gobain design, used for the 30 cell demonstrator.
-India will build a prototype cell according to the standard specifications.

Joint tests will be performed on the characterisation of the cells.

HESTAR. Resumee FAIR has started... Civil construction is starting now Planning is very advanced Impressive progress with accelerator components and detectors Optimizing current experiments by employing NUSTAR developments ... NUSTAR is in good shape ... last chance to get more involved NUSTAR Annual Meeting: Feb. 27. – March 2, 2012 at GSI Darmstadt NUSTAR Week: Oct. 8 - 12, 2012 at VECC Kolkata ANUP11 - JG

Super-FRS Buildings (as originally presented for ZBau)

Super-FRS Buildings (modularized start version)

How to proceed?

LEB

- 1. Parallel planning to get costs and not to loose time Agreed by FAIR, requires 68 k€ from collaborators
- 2. Organize extra funds to ask for building permit and start construction *Extra funds (estim. 1.5 M€) from external sources and/or from experiments to be raised within 1.5 years*

Ring Sub-Projects

- 1. Prepare a realization plan Continue R&D for TDRs, be ready if new funds come in
- 2. Pursue an attractive experiment programme at the ESR To keep the collaboration together
- 3. Realize essential parts of the instrumentation To be employed in other NUSTAR sub-projects