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Basic Concepts

I p-Value: the probability of obtaining at least as extreme results given
that the null hypothesis is true. Stated otherwise, this is the
probability that a random selection (null hypothesis) yields an
observation as extreme or more.
Example: We have 30 people in this room. All 30 of you are under 40
years of age. The p-value of this observation is the probability that a
randomly drawn sample of 30 people from the general population only
contains people who are no more than 40 years old. The lower this
probability, the more surprising is the observation.

I Statistical Signifiance: is attained when a p-value is less than a
prescribed significance level.

I Statistical significance is typically used for hypothesis testing.
However, we use this to estimate the “surprisingness” of observations.
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Motivation: Some Examples : Classifiers

Can I predict the Coffee Drinkers – a classification problem?
If I build a classifier with 90% precision and 90% recall, would you be
happy?
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Motivation: Some Examples

Can I predict the Coffee Drinkers – a classification problem?
If I build a classifier with 90% precision and 90% recall, would you be
happy?

What if I now told you that 90% of all people are coffee drinkers – the
Null Hypothesis!!

In the context of the null hypothesis, a classifier with 90% precision and
90% recall has no statistical significance at all!!
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Motivation: Some Examples: Associations

How can I infer rules of the kind: P(Bread) → P(Butter)? That is,
people who buy bread are also likely to buy butter.

The association rule mining algorithm works in two steps – in the first
step, all frequent sets are identified, and in the second step, the
conditional probability for these frequent sets is computed to identify
association rules.

Frequent sets are themselves computed using downward closure – all
subsets of frequent subsets must themselves be frequent.
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Motivation: Some Examples: Associations

I In reality, it does not work the way it should – the method mostly
identifies things that are obvious – nothing interesting.

I This is because frequency is a poor measure of statistical significance
(if at all).

I Even for the simplest priors (all items purchase probabilities are i.i.d),
frequent sets are not “statistically significant sets”.
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Motivation: Some Examples: Clustering

I run a set of uniformly distributed points through a standard
clustering algorithm, say, k-means. What happens?

I get a set of completely meaningless clusters! Should I be impressed?
How do I find the significance of a given set of clusters under a prior?
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Motivation: Some more questions to ponder.

I You run a graph clustering algorithm on facebook and you find a
group of 300 people who are (almost) completely connected. Should
you be excited?

I 70% of your friends on Facebook are male, 60% of your friends are
computer scientists, and 80% of your friends are Indian. Do these
numbers (and their overlaps) tell you anything?

I 75% of everyone’s friends on Facebook live within 50 miles of them.
Can I use distance as an indicator of friendship (topology
completion)?

I Can I trace the flow of a contagion through a network (its lineage), in
the form of a directed acyclic graph?
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Motivation: Most probable explanations.

I In each of the questions above, I am looking for “surprisingness” of
observations. In other words, I am trying to find observations that
minimize the p-value.

I In yet another class of problems, we can look to maximize the
probability, with respect to a prior:

I Given a dynamic network (say the spread of an infection), who
was patient 0?

I Who was the first person on facebook?

I In each of these questions, we are looking for the explanation most
consistent with our understanding of driving processes (priors). These
maximize probability w.r.t. the prior.
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What kinds of answers are we looking for?

When posed with an optimization problem (or an analytics problem) we
can look for different kinds of answers:

I The optimal solution (as defined by a suitable optimization problem).
This solution is typically infeasible at scale, and often, an overkill,
because of noise and missing data.

I The obvious solution. This solution is the one that you get from most
analytics algorithms. However, this is rarely useful.

I The most statistically significant solution. This is similar to the
optimal solution. It is generally infeasible at scale, but if feasible, it is
typically the most desirable.

I Any solution with high statistical significance. This trades off
feasibility and utility. In most cases, this is the solution of choice.

I The most probable solution. Generally computationally infeasible,
however, proofs of near-optimality are feasible.
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How do we develop solutions?

I Minimize statistical significance explicitly (i.e., use minimum p-value
as an optimization criteria). This is generally hard to formulate, and
even harder to realize in an efficient algorithm.

I Separate the algorithm from the quantification of p-values. Design
heuristic algorithms and show that the results are statistically
significant.
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Formulating and computing p-values?

I A p-value for an observation can be formulated in different ways. For
example, when formulating a p-value for the facebook dense subgraph
example, we can ignore the graph and simply look at the
hypergeometric p-value (probability of k successes in n trials, drawn
from a sample of N objects without replacement).

I Desirable formulations of p-values provide discriminating power.

I Defining suitable priors are critical for p values. A prior that is very
distant from the data will lead to very low p-values for all
observations. This is not useful.

I Priors may themselves be non-parametric.

I p-values may be analytical (often very hard to derive), or empirical
(often expensive to compute because of number of trials required).
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You run a graph clustering algorithm on facebook and you find a group of
300 people who are (almost) completely connected. Should you be

excited?
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Analytical Assessment of Statistical Significance of Clusters

I What is the significance of a dense component in a network?

I What is the significance of a conserved component in multiple
networks?
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Random Graph Models

I Interaction networks generally exhibit power-law property (or
exponential, geometric, etc.)

I Analysis simplified through independence assumption

I Independence assumption may cause problems for networks with
arbitrary degree distribution

I P(uv ∈ E ) = dudv/|E |, where du is expected degree of u, but
generally d2

max > |E | for PPI networks

I Rigorous analysis on G (n, p) model

I Extension to piecewise G (n, p) to capture network characteristics
more accurately
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Significance of Dense Subgraphs

I A subgraph of r nodes is said to be ρ-dense if F (r) ≥ ρr2, where
F (r) is the number of interactions between these r nodes

I What is the expected size of the largest ρ-dense subgraph in a
random graph?

I Any ρ-dense subgraph with larger size is statistically significant!
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Significance of Dense Subgraphs

I G (n, p) model

I n nodes, each interaction occurs with probability p
I Simple enough to facilitate rigorous analysis
I If we let p = dmax/n, largest ρ-dense subgraph in G (n, p)

stochastically dominates that in a graph with arbitrary degree
distribution

I Piecewise G (n, p) model

I Few nodes with many interacting partners, many nodes with few
interacting partners

I Captures the basic characteristics of many networks
I Analysis of G (n, p) model generalizes to this model
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Largest Dense Subgraph

I Theorem: If G is a random graph with n nodes, where every edge
exists with probability p, then

lim
n→∞

Rρ
log n

=
1

κ(p, ρ)
(pr .), (1)

where

κ(p, ρ) = ρ log
ρ

p
+ (1− ρ) log

1− ρ
1− p

. (2)

More precisely,

P(Rρ ≥ r0) ≤ O

(
log n

n1/κ(p,ρ)

)
, (3)

where

r0 =
log n − log log n + log κ(p, ρ)

κ(p, ρ)
(4)

for large n.
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Largest Dense Subgraph

Plugging in values of n, p, and setting ρ = 0.9, the p-value of a 300
person ρ dense component in facebook is about 10−4!

A. Grama (Purdue) Analytical Modeling 25 / 68



Piecewise G (n, p) model

I The size of largest dense subgraph is still proportional to log n/κ with
a constant factor depending on number of hubs

I Model:

P(uv ∈ E (G )) =


ph if u, v ∈ Vh

pl if u, v ∈ Vl

pb if u ∈ Vh, v ∈ Vl or u ∈ Vl , v ∈ Vh

I Result:
Let nh = |Vh|. If nh = O(1), then P(Rn(ρ) ≥ r1) ≤ O

(
log n

n1/κ(pl ,ρ)

)
,

where

r1 =
log n − log log n + 2nh logB + log κ(pl , ρ)− log e + 1

κ(pl , ρ)

and B = pbql
pl

+ qb, where qb = 1− pb and ql = 1− pl .
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Algorithms Based on Statistical Significance

I Identification of topological modules

I Use statistical significance as a stopping criterion for graph clustering
heuristics

I Find a minimum-cut bipartitioning of the network

I If any of the parts is dense enough, record it as a dense cluster of
proteins

I Else, further partition them recursively
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SiDeS Algorithm

p

p p

SiDeS is available at http://www.cs.purdue.edu/pdsl
A. Grama (Purdue) Analytical Modeling 28 / 68

http://www.cs.purdue.edu/pdsl


Performance of SiDeS

I Biological relevance of identified clusters is assessed with respect to
Gene Ontology (GO)

I Estimate the statistical significance of the enrichment of each GO
term in the cluster

I Quality of the clusters with respect to GO annotations

I Assume cluster C containing nC genes is associated with term T that
is attached to nT genes and nCT of genes in C are attached to T

I specificity = 100× nCT/nC
I sensitivity = 100× nCT/nT

SiDeS MCODE
Min. Max. Avg. Min. Max. Avg.

Specificity (%) 43.0 100.0 91.2 0.0 100.0 77.8
Sensitivity (%) 2.0 100.0 55.8 0.0 100.0 47.6

Comparison of SideS with MCODE
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Performance of SiDeS
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Performance of SiDeS
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70% of your friends on Facebook are male, 60% of your friends are
computer scientists, and 80% of your friends are Indian. Do these numbers

(and their overlaps) tell you anything?
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Combining Density and Overlap (CoDO) of Clusters in Graphs

An overlap is significant if ...

1. It is at least as dense as the constituting graphs

2. It is “large enough”

A. Grama (Purdue) Analytical Modeling 34 / 68



Combing Density and Overlap (CoDO)
Formal Statement

Definition

pCoDO = Pr[|Â∩B̂| ≥ |Z | ∩ δ(Â ∩ B̂) ≥ δ(Z )]

where Z is the set of vertices in the overlap subgraph and δ() measures

the density of a graph, i.e. |E |
C(|V |,2) .
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Combing Density and Overlap (CoDO)
Expansion

By conditioning on the size of the overlap, we can get an explicit formula
for this p-value in terms of hypergeometric tails:

pCoDO =

min{|Â|,|B̂|}∑
j=|Z |

Pr
[
|Â∩B̂| = j

]
· Pr

[
δ(Â∩B̂) ≥ δ(Z )

∣∣|Â∩B̂| = j
]

A. Grama (Purdue) Analytical Modeling 36 / 68



Combing Density and Overlap (CoDO)
Example
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(c) Significant Overlap/In-
significant Density
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Combing Density and Overlap (CoDO)
Application– Social networks
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(e) Facebook
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(f) Google+
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(g) Twitter

Definition

Ego Net is the induced subgraph among friends (alters) of a given user (ego)

A. Grama (Purdue) Analytical Modeling 38 / 68



Combing Density and Overlap (CoDO)
Application– Biological networks

Immune Response

DNA Replication and Repair

Drug Metabolism

Cancer Signaling Pathways

Overlap among KEGG pathways is an indicator of pathway cross-talk

A. Grama (Purdue) Analytical Modeling 39 / 68



Outline

1 Background
Basic Concepts
Motivating Examples
Analytical Frameworks

2 Analytics in Action
Statistical Significance of Clusters
Statistical Significance of Overlap of Clusters
Clusters and Lineage
Design of (Nonparametric) Priors

3 Some Open Problems

A. Grama (Purdue) Analytical Modeling 40 / 68



Tracking Lineage of Clusters

Say, your favorite clustering algorithm gives you the following clusters:

X YZ

A B

Can we say anything about the lineage of these clusters?
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Tracking Lineage of Clusters

I We need to make sure that each of the clusters, x, y, and z are
statistically significant themselves.

I We need to make sure that one of the clusters is not contained in the
other (statistical significance of edge cut).

I We need to assess the statistical significance of the overlap of the two
clusters.
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Tracking Lineage of Clusters
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Tracking Lineage of Clusters
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Design of (Nonparametric) Priors

Constructing suitable background distributions – the case for
non-parametric priors.

Aligning a set of tissue-specific interaction networks to the interactions in
yeast with the goal of identifying the most statistically significant
alignments.
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Problem statement

For which tissues is
yeast a good model
organism?

Different human tissues, while inheriting a similar
genetic code, exhibit unique anatomical and
physiological properties.

What are the shared/
missing functional
components in yeast,
compared to human
tissues?

A. Grama (Purdue) Analytical Modeling 47 / 68



Random model for tissue-specific networks

Definition

I Global human interactome: All potential interactions between human proteins,
represented by graph G = (VG ,EG )

I Tissue-specific network(s): Vertex-induced subgraph(s) of the Global human
interactome, represented by GT = (VT ,ET ) with nT = |VT |, VT ⊂ VG , and
ET ⊂ EG

I Universal genes: Ubiquitously expressed subset of human genes corresponding to
houskeeping functions, represented by VU ⊂ VG , and nU = |VU |

I Random tissue-specific network(s): Vertex-induced subgraphs of G , constructed
from VR = VU ∪ VS , with VS being random set of vertices of size nT − nU
selected from VG \ VU
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Significance of network alignment(s)

Definition

I Original alignment: W = wT x , O = 1
2
xTSx

I Monte-Carlo simulation: Let WR and OR be the random vectors representing the weight and overlap of aligning
kR random tissue-specific networks with yeast

I Positive/Negative cases: kP is the number of random cases with both WR ≤W and . OR ≤ O. kN is defined as
the size of complement set.

I p-value bounds:

δR =
kP

kR
≤ alignment p-value ≤ 1−

kN

kR
= ∆R

I Alignment p-value:
p − value = Prob(α ∗O + β ∗W ≤ OWR)
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Partitioning human genes based on their expression selectivity

Definition

Selectivity p-value– Given a cluster of homogenous tissues:

p-value(X = cn) = Prob(cn ≤ X )

= HGT (cn|N, n, cN)

=

min(cN ,n)∑
x=cn

C(cN , x)C(N − cN , n − x)

C(N, n)

N: total number of tissues, n: number of tissues in the cluster, cN : number of tissues in
which a given gene is expressed, cn: number of tissue in the cluster that the given gene
is expressed.
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Human-specific or conserved?

Definition

Classification of human tissue-selective genes:

I Conserved: Subset of tissue-selective genes that are consistently aligned in the ”majority” of aligned tissues in the given
group

I Human-specific: Subset of tissue-selective genes that are consistently unaligned in the ”majority” of tissues in the given
group

I Unclassified: None of the above

Definition

Majority voting:

I Alignment consistency table: Yeast partner of each tissue-selective gene in the given cluster of tissues

I Consensus rate: Minimum percentage of tissues (columns) in each row of the alignment consistency table that have to
agree to make a decision about conserved/human-specificity
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Core genes– The most conserved subset of housekeeping genes
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Functional enrichment of HK genes
Core subset

I Ribosome biogenesis

I Translation

I Protein targeting

I RNA splicing

I mRNA surveillance
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Functional enrichment of HK genes
Human-specific subset

I Anatomical structure development

I Paracrine signaling

I NADH dehydrogenase (mitochondrial Complex I)
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The most similar tissues to yeast

Name pval lower bound overall pval pval upper bound confidence
Myeloid Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Monocytes < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Dentritic Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
NK Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
T-Helper Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Cytotoxic T-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B-Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Endothelial < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Hematopoietic Stem Cells < 1.00e-04 < 1.00e-04 < 1.00e-04 1
MOLT-4 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
B Lymphoblasts < 1.00e-04 < 1.00e-04 < 1.00e-04 1
HL-60 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
K-562 < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Early Erythroid < 1.00e-04 < 1.00e-04 < 1.00e-04 1
Bronchial Epithelial Cells < 1.00e-04 < 1.00e-04 0.0002 0.9998
Colorectal Adenocarcinoma < 1.00e-04 < 1.00e-04 0.0004 0.9996
Daudi < 1.00e-04 < 1.00e-04 0.0009 0.9991
Testis Seminiferous Tubule < 1.00e-04 < 1.00e-04 0.0012 0.9988
Smooth Muscle < 1.00e-04 < 1.00e-04 0.0016 0.9984
Blood (Whole) < 1.00e-04 < 1.00e-04 0.0053 0.9947
Thymus < 1.00e-04 0.0001 0.0062 0.9938
Testis Interstitial < 1.00e-04 0.0004 0.0086 0.9914
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The least similar tissues to yeast

Name pval lower bound overall pval pval upper bound confidence
Trigeminal Ganglion 0.9947 0.9994 1 0.9947
Superior Cervical Ganglion 0.9847 0.9991 1 0.9847
Ciliary Ganglion 0.9407 0.9813 0.9964 0.9443
Atrioventricular Node 0.8746 0.9792 0.9921 0.8825
Skin 0.8355 0.9297 0.9809 0.8546
Heart 0.7934 0.9585 0.9815 0.8119
Appendix 0.7596 0.9371 0.973 0.7866
Dorsal Root Ganglion 0.7065 0.933 0.9717 0.7348
Skeletal Muscle 0.3994 0.5902 0.7866 0.6128
Uterus Corpus 0.233 0.7736 0.8769 0.3561
Lung 0.0771 0.3853 0.5544 0.5227
Pons 0.0674 0.5201 0.6983 0.3691
Salivary Gland 0.0639 0.3449 0.5173 0.5466
Liver 0.0600 0.6857 0.8519 0.2081
Ovary 0.0388 0.2735 0.4481 0.5907
Trachea 0.0259 0.2376 0.4146 0.6113
Globus Pallidus 0.0206 0.2471 0.4336 0.587
Cerebellum 0.0127 0.1950 0.3783 0.6344
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Tissue-tissue similarity network
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Blood cells
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Figure: Enrichment map of unique blood-selective functions.
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Brain tissues
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Figure: Enrichment map of unique brain-selective functions.
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Enriched disease classes

Conserved genes Human-specific genes
Disease class p-value Disease class p-value

Blood cells Cancer 2.85 ∗ 10−3 Immune 1.88 ∗ 10−9

Infection 1.00 ∗ 10−2

Brain tissues Psych 3.59 ∗ 10−4 Psych 5.70 ∗ 10−8

Chemdependency 2.60 ∗ 10−3 Neurological 2.97 ∗ 10−2

Pharmacogenomic 9.74 ∗ 10−2
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Comparative analysis of brain-specific pathologies

Disorder Conserved genes Human-specific genes
schizophrenia 0.008573 8.4905E-06
autism 0.048288 0.00077448
dementia 0.0014356 -
schizophrenia; schizoaffective disorder; bipolar disorder - 0.0021433
myocardial infarct; cholesterol, HDL; triglycerides; atherosclerosis, coronary;
macular degeneration; colorectal cancer

0.0051617 -

epilepsy 0.071562 0.0064716
seizures - 0.020381
bipolar disorder 0.048288 0.022016
attention deficit disorder conduct disorder oppositional defiant disorder 0.032444 0.023865
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Some Interesting Questions
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Significance of Keywords in Text

I Search engines typically search for keywords, and use proximity of
keywords as one of the primary heuristics for ordering search results.

I An alternate (and more rogorous, IMHO) formulation would order
documents by the statistical significance of keyword occurrance.

I Given a sequence < S > (along with a generation model for < S >,
preferably Markovian), what is the likelihood of observing a given set
of keywords k1, ..., kj within the shortest subsequence < S ′ > of
< S > of length d or less.

I The lower this p-value, the more significant the match (i.e., rank this
higher among returned results).
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Significance of Snippets in Graphs

I Consider your favorite social network and construct a mapping from
node attrubutes to a scalar (the color of the node). For instance,
females, over 30, making more than $200K are mapped to color Red;
males over 30 with two children are mapped to color Green.

I Can we argue the statistical significance of tight subgraphs that
contain prescribed colors – for instance, do we see overrepresentation
of tight subgraphs containing Red, Green, and Blue (children,
perhaps) nodes?

I Given a graph G (along with a generation model for G ), what is the
likelihood of observing a given set of query colors c1, ..., cj in a
subgraph G ′ of G of diameter d or less?
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Arrival Sequence of Nodes in Dynamic Graphs

I For a dynamic network, how can we infer a likely arrival sequence for
nodes?

I Given a graph G (along with a generation model for G ), what is the
likelihood of observing the graph G for a given arrival sequence
n1, n2, ..., nk . How do we determine this arrival sequence to maximize
the probability?

I For a preferential attachment model, we can generate a set of
precedence constraints. Any arrival sequence that satisfies all of these
precedence constraints is a potential true sequence.

I How do we optimize within this (super)exponential space? We have
some experimental evidence and theoretical justification to show that
we dont have to!
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Arrival Sequence of Nodes in Dynamic Graphs

Figure: Probability of randomly selected feasible arrival sequences.
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Some Parting Thoughts

I Significance if an essential aspect of quantifying the usefulness of an
observation.

I Significance is an essential component of validating observations.

I Significance testing is hard; requiring solutions to complex analysis
problems.

I Maximizing significance should be one of the primary goals of
algorithms/ heuristics.
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Thanks

Many thanks to the organizers for giving me this opportunity to talk, and
to you for engaging with me!
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