Games, Epidemics and Behavior International Center for Theoretical Studies; Tata Institute of Fundamental Research

Climate & Complexity: "Managing the Unavoidable"

National Laboratory

IMISSION

Auroop R. Ganguly

(Video by Udit Bhatia) Sustainability & Data Sciences Laboratory

Civil and Environmental Engineering Northeastern University, Boston, MA, USA

June 30, 2016

National Institute of Standards and Technology

AUCLEAR REG

Northeastern

"Nonstationarity": Climate Change Premise

Temperature increases are human-induced The anthropogenic climate change "fingerprint"

In the absence of human-induced changes to the atmosphere, the earth would be in a cooling trend

Acts of God: & Inaction of Man

Games, Epidemics and Behavior

Trends & Uncertainties: Heat Waves

Larger trends but higher uncertainty and spatial variability in regional warming and heat waves Northeastern University

ICTS, Bengaluru (TIFR)

Surprising Insight: Cold Extremes

Plausible Insights: Precipitation Extremes

Uncertainties dominate at regional scales and grow with precision

Games, Epidemics and Behavior

JER | Journal of Geophysical Research Atmospheres

ICTS, Bengaluru (TIFR)

6

Plausible Insights: Freshwater Resources

Northeastern University

Water stress: Combined population and climate change

Plausible Insights: Water-Energy Nexus

Plausible Insights: Marine Ecology

Northeastern University

Games, Epidemics and Behavior

The "Big Data – small data" conundrum

Geography:

- Space-Time / Features "First Law": Correlations
- Teleconnections ("El Nino")

Complexity:

Chaos & Sensitivity to Initial Conditions Random (Random Walk to "1/f Noise") Nonlinear Dependence

Long Memory ("Hurst" phenomenon) Long Range Teleconnections ("El Nino")

Extremes:

AAAS

- **T-year Events**
- Abrupt Change
- **Multivariate Extremes**
- Spatiotemporal Extreme Dependence

Jonathan T. Overpeck, ¹* Gerald A. Meehl, ² Sandrine Bony, ³ David R. Easterling⁴

"Deep Uncertainty": Complex, Stochastic

11

 Δ (P–E): Thirty-year differences of five-year averages Columns: Model Ensembles; Rows: Initial Conditions Margins (shaded): Average of the Simulated Values Darker Blue: Wetter; Darker Brown: Drier

Deep Uncertainty: "Chaos"

Large sensitivity to initial condition runs for low frequency signals

Wide variation among models: Irreducible uncertainty?

Games, Epidemics and Behavior

MIROC MED

NCAR PCM

Deep Uncertainty: "Teleconnections"

Low-frequency natural variability of the earth's climate system

Ocean influence on regional land climate (Case of the Indian monsoons)

Games, Epidemics and Behavior

Extremes Characterization: Indian Monsoons

Northeastern University

Games, Epidemics and Behavior

No increasing trends in rainfall extremes in India during last half-century

ICTS, Bengaluru (TIFR)

14

Extremes in Space: Trends & Variability

nature climate change

Steady increase in the spatial variability of observed rainfall extremes (Extreme value theory and the Bootstrap)

Multivariate Extremes: Correlations

Games, Epidemics and Behavior

statistical, nonlinear, and soft matter physics

ICTS, Bengaluru (TIFR)

Nonlinear Correlation: "Toy" Models

to short and noisy data Northeastern University

17

Games, Epidemics and Behavior

18

Nonlinear Correlation: El Nino & Hydrology

Climate Networks: Dependence & Teleconnections

Games, Epidemics and Behavior

Climate Networks: Predictive Analysis

9 Regions: Temperature and Precipitation
1. Climate knowledge wins over naïve data mining in 2 of 3 cases
2. Naïve data mining wins over domain knowledge in 1 of 3 cases
3. Climate knowledge fails to improve over complex networks

Steinhaeuser et al. (2011): SA	DM PERU (T)	BRAZIL (P)	INDIA (T)
K-Means (5):	0.564	0.778	0.784
K-Means (10):	0.623	0.842	1.052
K-Means (Selected Clusters):	0.615	0.522	0.791
Domain Knowledge":	0.552	0.659	0.572
Complex Networks (All Clusters):	•••• 0.468	•••• 0.509	0.649
Complex Networks (Selected):	0.524	0.591	••• 0.532
	VWS		
Whither predictability beyond current domain knowledge? Long range dependence patterns within ocean convection?		Peru Temperature 4 updraft velocity clusters 1 geopotential height cluster 1 wind speed cluster India Temperature 5 updraft velocity clusters 4 relative humidity clusters	1 precipitable water cluster 1 relative humidity cluster
	5 5000 (2003 (5032) Disance (3ar)	5 updraft velocity clu	sters

Games, Epidemics and Behavior

21

22

Infrastructure Resilience: Lifeline Networks

Response

Network science exist Barabasi et al. (2000), Gao et al. (2011), Karrer et al. (2008)

Recovery

Emerging research Anecdotal case studies Ad-hoc cases

Overall framework

Qualitative description (Linkov et. Al, 2014)

Infrastructural Resilience: Indian Railways

24

Infrastructural Resilience: Boston Lifelines (Work in Progress)

Games, Epidemics and Behavior

25

ICTS, Bengaluru (TIFR)

Ecological Resilience: Biodiversity & Species Loss (Work in Progress)

scattered across the globe.

Behavior Modeling: Agent Based Models

"Even if these models turn out to be basic, they would at least open up a way for commanders to think about cultural and behavioral factors when they make decisions" **Anthony Zinni, former Chief of US**

Central Command

"They are smoking something they shouldn't be ... Only those who don't know how the real world works will be suckers for this stuff"

Paul Van Riper, Lt. Gen. (ret.) for Dir. Intel, U.S. Army

Games, Epidemics and Behavior

Northeastern University

Broader Impacts: Societal Priorities

Climate Change and Sea Level Rise Projections for Boston

The Boston Research Advisory Group Report

JUNE 1, 2016

27

CLIMATE READY BOSTON | CLIMATEREADY.BOSTON.GOV | #CLIMATEREADYBOSTON

Games, Epidemics and Behavior

Climate Change and Sea Level Rise Projections for Boston The Boston Research Advisory Group Report

Management Team

Ellen Douglas, University of Massachusetts Boston, Ellen.Douglas@umb.edu Paul Kirshen, University of Massachusetts Boston, Paul.Kirshen@umb.edu Robyn Hannigan, University of Massachusetts Boston, Robyn.Hannigan@umb.edu Rebecca Herst, University of Massachusetts Boston, Rebecca.Herst@umb.edu Avery Palardy, University of Massachusetts Boston, Avery.Palardy001@umb.edu

Sea Level Rise

Robert DeConto, University of Massachusetts Amherst, Team Leader Duncan FitzGerald, Boston University Carling Hay, Harvard University Zoe Hughes, Boston University Andrew Kemp, Tufts University Robert Kopp, Rutgers University

Coastal Storms

Bruce Anderson, Boston University, Team Leader Zhiming Kuang, Harvard University Sai Ravela, Massachusetts Institute of Technology Jonathan Woodruff, University of Massachusetts Amherst

Extreme Precipitation

Mathew Barlow, University of Massachusetts Lowell, Team Leader Mathias Collins, NOAA Art DeGaetano, Cornell University C. Adam Schlosser, Massachusetts Institute of Technology

Extreme Temperatures

Auroop Ganguly, Northeastern University, Team Leader Evan Kodra, risQ Company Matthias Ruth, Northeastern University

The Boston Blobe

Ongoing Work: Climate & Public Health

THRIVING EARTH EXCHANGE

out - Projects - Media - Register Contact Us

Building Community Resilience to Extreme Heat Brookline, Massachusetts

Description

The Challenge

In the greater Boston metropolitan area, the town of Brookline, MA, is concerned over threats posed by heat extremes in temperature. Importantly, vulnerable populations, such as the growing number of elderly in the community, are making these extremes more palpable. Although larger municipalities in the greater Boston area have data on heat extremes and are willing to share this data, Brookline does not currently have data on how heat will affect the town specifically. However, area projections do show a significant increase in the number of dangerously hot days and longer and more frequent heatwaves in the coming decades – underscoring the need to address heat and potential impacts to public health.

The region's planners and sustainability managers – organized through the Metropolitan Area Planning Council (MAPC) – are committed to creating local climate vulnerability assessments for communities in the area. Brookline would like to show progress towards the development of their vulnerability assessment by the time MAPC expects to host a climate change preparedness summit in November 2016. At this stage, identifying all available data sources relevant to the town of Brookline and high heat extremes and synthesizing this data into an initial assessment of heat vulnerability is most important.

THRIVING EARTH EXCHANGE Powered by AGU

Games, Epidemics and Behavior

Broader Impacts: Lab Spinout

www.risq.io

Sustainability and Data Sciences (SDS) Lab. We develop products and analytics for helping public and private stakeholders enhance their resilience to climate change, weather extremes, and natural/man-made hazards. These stakeholders reside in the insurance and critical infrastructure sectors (i.e. transportation, water, energy).

In addition, risQ offers in-depth analytics and statistical modeling consulting services for challenging, data-centric problems. Contact us if you're interested in learning more!

- even worse for Boston than previously thought
- Press Release: SDS Lab Forms risQ Spinout Company
- Network based quantification of lifeline robustness and recovery
- Temperature extremes under climate change and variability
- Physics-guided data mining for climate model downscaling
- Changes in observed climate extremes in global urban areas

- Patent 62/153,243
- Probabilistic modeling of climate-driven weather extremes and natural hazards Patent 61/971,932

- AIR Worldwide .
- Boston Green Ribbon Commission
- Town of Brookline
- City of Boston .

Northeastern University

30

Broader Impacts: Best Practices

Video: "Make in India"

SDS Lab Videos Playlist (by created Udit Bhatia): https://www.youtube.com/playlist?list=PLI-Aw0yy9N9_5yvkCvvQsIXH8cac6pqwq

> Citations and References: SDS Lab: www.northeastern.edu/sds NU COE: www.civ.neu.edu/people/ganguly-auroop RisQ: www.risq.io Contact: a.ganguly@neu.edu

Northeastern University