Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Adaptive Rumor Spreading joint work with J.R. Correa (U. Chile) N. Olver (VU Amsterdam) A. Vera (U. Chile / Cornell U.)

Marcos Kiwi

U. Chile

Introduction	Model	Analysis	Conclusion
•00000	000	00000000	0000

Introduction •00000	Model 000	Analysis 00000000	Conclusion 0000

Introduction •00000	Model 000	Analysis 00000000	Conclusion 0000

Introduction •00000	Model 000	Analysis 00000000	Conclusion 0000

Introduction	Model	Analysis	Conclusion
00000	000	00000000	0000

Introduction

Studied as:

- Rumor spreading in social networks: content, updates, new technology ...
- ▶ Stochastic epidemic models.
- Viral marketing (where the selection of starting nodes is crucial).
 Domingos and Richardson (2001), ...
- ► Communication off-loading in opportunistic networks.

Whitbeck at al. (2011), Sciancalepore et al. (2014)

Note: Models differ in way time evolves (a/synchronous) and communication protocol. Demers et al. (1987), Boyd et al. (2006), ...

Introduction	Model	Analysis	Conclusion
00000	000	00000000	0000

Synchronous discrete time rumor spreading in K_n

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Asynchronous continuous time rumor spreading in K_n

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Opportunistic networks

Proposal to address overload problem in data networks: exploit opportunistic communications.

Introduction	Model	Analysis	Conclusion
00000	000	00000000	0000

Our focuss: Fix deadline scenario

Motivation:

- ▶ QoS restrictions in content delivery of news, traffic updates, etc.
- ▶ Marketing products such as flights, event tickets, etc.
- ▶ Distribution of alerts, say a tsunami warning.
- ► Sensing/monitoring environment within time windows.

Introduction	Model	Analysis	Conclusion
00000	000	00000000	0000

Our focuss: Fix deadline scenario

Motivation:

- ▶ QoS restrictions in content delivery of news, traffic updates, etc.
- ▶ Marketing products such as flights, event tickets, etc.
- ▶ Distribution of alerts, say a tsunami warning.
- ► Sensing/monitoring environment within time windows.

Previous work:

- ► Studied heuristically for real data. Whitbeck et al. (2011)
- Control theory based algorithms greatly outperform static ones.
 Sciancalepore et al. (2014)

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Introduction Motivation

Model Description

Analysis Non-adaptive case Adaptive case Large deadline Small deadline Moderate deadline

Conclusion

Additional results Further work

Introduction 000000	Model ●00	Analysis 00000000	Conclusion 0000
			(

Model

- ▶ n nodes.
- Each pair of nodes can meet and gossip. If any one of them is active, then both become active.
- ▶ Continuous time.
- ▶ Pairs meet according to a Poisson process of rate λ/n , i.e., time between two consecutive meetings are exponentials of rate λ/n .

Introduction 000000	Model 0●0	Analysis 00000000	Conclusion 0000

The problem

- ▶ Pushes (external activations) have unit cost.
- Opportunistic communications (intra-network activations) have no cost.
- ▶ Nodes send an acknowledgement when they become active.
- At a given horizon/deadline τ all nodes must be active.

Introduction 000000	Model 0●0	Analysis 00000000	Conclusion 0000

The problem

- ▶ Pushes (external activations) have unit cost.
- Opportunistic communications (intra-network activations) have no cost.
- ▶ Nodes send an acknowledgement when they become active.
- At a given horizon/deadline τ all nodes must be active.

Two possible scenarios: Adaptive and non-adaptive.

Introduction 000000	Model 0●0	Analysis 00000000	Conclusion 0000

The problem

- ▶ Pushes (external activations) have unit cost.
- Opportunistic communications (intra-network activations) have no cost.
- ▶ Nodes send an acknowledgement when they become active.
- At a given horizon/deadline τ all nodes must be active.

Two possible scenarios: Adaptive and non-adaptive.

Natural question:

Compare best adaptive and non-adaptive strategies that minimize the expected overall number of pushes.

Introduction	Model	Analysis	Conclusion
000000	00●	00000000	0000

Main result

Theorem

The adaptivity ratio, i.e., the ratio $\rho(\tau)$ between the expectated costs of the optimal non-adaptive vs the expected cost of the optimal adaptive strategies, is O(1).

In plain English:

No significant gain in being adaptive!

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Introduction Motivation

Model Descriptio

Analysis Non-adaptive case Adaptive case Large deadline Small deadline Moderate deadline

Conclusion

Additional results Further work

Introduction	Model	Analysis	Conclusion
000000	000	•00000000	0000

Non-adaptive

When *i* nodes are active, the time T_i until i + 1 nodes become active is the min of i(n - i) i.i.d. $\text{Exp}(\lambda/n)$, i.e.

 $T_i \sim \operatorname{Exp}(\lambda_i), \quad \text{for } \lambda_i := \frac{\lambda}{n} i(n-i).$

Recall: $\mathbb{E}(T_i) = \sigma(T_i) = \frac{1}{\lambda_i}$.

Introduction	Model	Analysis	Conclusion
000000	000	•00000000	0000

Non-adaptive

When *i* nodes are active, the time T_i until i + 1 nodes become active is the min of i(n - i) i.i.d. $\text{Exp}(\lambda/n)$, i.e.

 $T_i \sim \operatorname{Exp}(\lambda_i), \quad \text{for } \lambda_i := \frac{\lambda}{n} i(n-i).$

Recall: $\mathbb{E}(T_i) = \sigma(T_i) = \frac{1}{\lambda_i}$.

Henceforth $\lambda = 1$.

Introduction	Model	Analysis	Conclusion
000000	000	0000000	0000

Stochastic domination argument implies that non-adaptive does not perform more than n/2 pushes (therefore, neither adaptive).

00000 000 000 0000 0000 0000	Introduction	Model	Analysis	Conclusion
	000000	000	00000000	0000

Optimal non-adaptive

Say $K_N(t)$ is the number of active nodes at t (right cont.)

▶ We are interested in determining

$$\operatorname{COST}_N := \min_{k=1,\dots,n} (k + u_k(0))$$

where $u_k(t) := \mathbb{E}(n - K_N(\tau^-)|K_N(t) = k)$ is the expected number of inactive nodes just before the deadline given that at time t there are k active nodes.

000000 000 0000 0000 0000	Introduction	Model	Analysis	Conclusion
	000000	000	00000000	0000

Some observations

- ▶ $u_k(t)$ is a convex function of k (via submodularity arguments).
- $k + u_k(t)$ has a "unique" minima.
- ► $u_k(t)$ is essentially solution to the classical epidemic/diffusion model $\frac{dx}{dt} = -\lambda x(n-x)$, i.e., the "logistic function"

$$u_k(t) = \frac{n(1+o(1))}{1 + \frac{k}{n-k}e^{\tau-t}} + o(1).$$

• Optimal k is
$$k_N = \frac{n(1+o(1))}{1+e^{\tau/2}}$$
 and $\text{Cost}_N = 2k_N(1+o(1))$.

Introduction	Aodel .	Analysis	Conclusion
000000 0	000	00000000	0000

Adaptive: Large deadline $(\tau \ge (2+\delta) \ln n)$

If at t = 0 there is just 1 active node, then the time until every node is active is concentrated around $2 \ln n + O(1)$

Janson (1999)

Thus, the adaptivity ratio is 1 + o(1).

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Adaptive: Small deadline $(\tau \le 2 \ln \ln n)$

• Consider a Poisson process of unit rate in the line.

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Adaptive: Small deadline $(\tau \le 2 \ln \ln n)$

- ▶ Consider a Poisson process of unit rate in the line.
- Given points S_i, S_{i+1} , a rescaling gives $T_i \sim \frac{S_{i+1}-S_i}{\lambda_i}$

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Adaptive: Small deadline $(\tau \le 2 \ln \ln n)$

- Consider a Poisson process of unit rate in the line.
- Given points S_i, S_{i+1} , a rescaling gives $T_i \sim \frac{S_{i+1}-S_i}{\lambda_i}$
- ▶ A push can be thought of as adding a point.

00000 000000 0000 00000 0000	Introduction	Model	Analysis	Conclusion
	000000	000	000000000	0000

Adaptive: Small deadline (cont.)

Definition (Clairvoyant strategy)

Chooses when to push knowing point process realization.

Clearly:

- Outperforms adaptive.
- Adds points only at the beginning.

Introduction M	odel An	nalysis	Conclusion
000000 00	00 00	0000000	0000

Adaptive: Small deadline (cont.)

Definition (Clairvoyant strategy)

Chooses when to push knowing point process realization.

Clearly:

- ▶ Outperforms adaptive.
- Adds points only at the beginning.

Claim

 $\operatorname{Cost}_A \ge \operatorname{Cost}_{CV} = \operatorname{Cost}_N - \mathcal{O}(\sqrt{n}\ln^2 n)$

and

 $\operatorname{COST}_N = \Omega(n/\ln n).$

Introduction	Model	Analysis	Conclusion
000000 0	000	000000000	0000

Adaptive: Moderate deadlines $(2 \ln \ln n < \tau < 2(1 + \delta) \ln n)$

Insight: optimal adaptive/non-adaptive are given by thresholds:

Introduction	Model	Analysis	Conclusion
000000	000	○○○○○○○●	0000

Relaxed adaptive

A relaxed adaptive is an adaptive strategy that:

- Pushes for free.
- Pushes if there are less than n/2 active nodes or τ is reached.
- Pushes at t only if $t \ge \tau t_{K^*(t)}$ where $K^*(t)$ is the number of active nodes at time t when following the optimal adaptive strategy.

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Relaxed adaptive

A relaxed adaptive is an adaptive strategy that:

- Pushes for free.
- Pushes if there are less than n/2 active nodes or τ is reached.
- ▶ Pushes at t only if $t \ge \tau t_{K^*(t)}$ where $K^*(t)$ is the number of active nodes at time t when following the optimal adaptive strategy.

Then, associate a Doob sub-martingale, re-scale, transform, and show is dominated by a negative drift transformed Poisson process.

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Introduction Motivation

Model Descrip

nalysis Non-adaptive case Adaptive case Large deadline Small deadline Moderate deadline

Conclusion

Additional results Further work

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

Additional results

▶ Results hold also for target set version of the problem.

▶ Unbounded adaptivity ratio for inhomogenous networks.

Introduction	Model	Analysis	Conclusion
000000 0	000	00000000	0000

Some questions

• What is the exact adaptivity ratio? Could it be 2 + o(1)?

There is strong numerical evidence that 2 is the right constant factor.

• Is $\operatorname{COST}_N \leq \operatorname{COST}_A + \mathcal{O}(1)$?

▶ Is there a broader class of graphs maintaining the constant gap result? Maybe high conductance graphs?

Introduction	Model	Analysis	$\begin{array}{c} \text{Conclusion} \\ \circ \circ \bullet \circ \end{array}$
000000	000	00000000	

Some questions (cont.)

- ▶ What about the inhomogenous setting? Say
 - ▶ rates satisfy triangle inequality: $\lambda_{i,j}^{-1} \leq \lambda_{i,k}^{-1} + \lambda_{k,j}^{-1}$ for all i, j, k.
 - there is an underlying geometric space so $\lambda_{i,j}^{-1} \sim \frac{1}{(\operatorname{dist}(i,j))^{\beta}}$.
 - rates indicate whether or not ij is an edge of a HRG.

How should fairness issues be dealt with?

Introduction	Model	Analysis	Conclusion
000000	000	00000000	0000

The End!