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Context

Inter-communicating agents, population, clients, devices, etc.
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Introduction
Studied as:
» Rumor spreading in social networks: content, updates, new
technology ...

» Stochastic epidemic models.

» Viral marketing (where the selection of starting nodes is
Crucial). Domingos and Richardson (2001), ...

» Communication off-loading in opportunistic networks.
Whitbeck at al. (2011), Sciancalepore et al. (2014)

Note: Models differ in way time evolves (a/synchronous) and
communication protocol. Demers et al. (1987), Boyd et al. (2006), ...
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Synchronous discrete time rumor spreading in K,
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Asynchronous continuous time rumor spreading in K,
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Opportunistic networks

Proposal to address overload problem in data networks:
exploit opportunistic communications.
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Our focuss: Fix deadline scenario

Mbotivation:

v

QoS restrictions in content delivery of news, traffic updates, etc.

v

Marketing products such as flights, event tickets, etc.

v

Distribution of alerts, say a tsunami warning.

v

Sensing/monitoring environment within time windows.
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Our focuss: Fix deadline scenario

Motivation:
> QoS restrictions in content delivery of news, traffic updates, etc.
» Marketing products such as flights, event tickets, etc.
» Distribution of alerts, say a tsunami warning.

» Sensing/monitoring environment within time windows.

Previous work:
» Studied heuristically for real data. Whitbeck et al. (2011)

» Control theory based algorithms greatly outperform static ones.
Sciancalepore et al. (2014)
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Motivation

Model
Description

Non-adaptive case

Adaptive case
Large deadline
Small deadline
Moderate deadline

Additional results
Further work
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Model
> n nodes.
» Each pair of nodes can meet and gossip. If any one of them is
active, then both become active.
» Continuous time.
» Pairs meet according to a Poisson process of rate A\/n, i.e., time

between two consecutive meetings are exponentials of rate A/n.

f(t)=aet
2672t
& 1o—t/2
~— 2
t
avg:% avg=2
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The problem

v

Pushes (external activations) have unit cost.

v

Opportunistic communications (intra-network activations) have
no cost.

v

Nodes send an acknowledgement when they become active.

v

At a given horizon/deadline 7 all nodes must be active.
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The problem

» Pushes (external activations) have unit cost.

» Opportunistic communications (intra-network activations) have
no cost.

» Nodes send an acknowledgement when they become active.

» At a given horizon/deadline 7 all nodes must be active.

Two possible scenarios: Adaptive and non-adaptive.

Natural question:
Compare best adaptive and non-adaptive strategies that
minimize the expected overall number of pushes.
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Main result

Theorem

The adaptivity ratio, i.e., the ratio p(T) between the expectated
costs of the optimal non-adaptive vs the expected cost of the
optimal adaptive strategies, is O(1).

In plain English:

No significant gain in being adaptive!
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Analysis

Non-adaptive case

Adaptive case

Large deadline
Small deadline
Moderate deadline
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Non-adaptive

When 7 nodes are active, the time 7T} until 7 + 1 nodes become
active is the min of i(n — 7) i.i.d. Exp(\/n), i.e.

T; ~ Exp()\;), for \;:= %z(n — ).

Recall: E(T;) = o(T;) = /\%
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Non-adaptive

When 7 nodes are active, the time 7T} until 7 + 1 nodes become
active is the min of i(n — 7) i.i.d. Exp(\/n), i.e.

T; ~ Exp()\;), for \;:= %z(n — ).

Recall: E(T;) = o(T;) = /\%
Henceforth A = 1.
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Example (n =50, A =1)

Ai
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Stochastic domination argument implies that non-adaptive does
not perform more than n/2 pushes (therefore, neither adaptive).
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Optimal non-adaptive

» Say Ky(t) is the number of active nodes at ¢ (right cont.)

» We are interested in determining

Costy := min (k+ u(0))

k=1,...,n

where u(t) := E(n — Ky(77)|Kn(t) = k) is the expected
number of inactive nodes just before the deadline given that at
time ¢ there are k active nodes.
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Some observations

» ui(t) is a convex function of k (via submodularity arguments).
» k+ u(t) has a “unique” minima.

» u(t) is essentially solution to the classical epidemic/diffusion

model % = —Az(n — z), i.e., the “logistic function”
n(1+o(1
u(t) = (T()L o(1).
1+ meT
n(14+o(1))

» Optimal £ is ky = and CosTy = 2ky(1+4o0(1)).

1+ e7/2
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Adaptive: Large deadline (r > (2 +6)Inn)

If at ¢t = 0 there is just 1 active node, then the time until every
node is active is concentrated around 21Inn + O(1)
Janson (1999)

Thus, the adaptivity ratio is 1 4 o(1).
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Adaptive: Small deadline (r < 2mnnn)

» Consider a Poisson process of unit rate in the line.
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Adaptive: Small deadline (r < 2mnnn)

» Consider a Poisson process of unit rate in the line.
Sit1—3S;
>\.

[

» Given points S;, S;+1, a rescaling gives T; ~

i
{
(

Ak )\k+1 Ai
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Adaptive: Small deadline (r < 2mnnn)

» Consider a Poisson process of unit rate in the line.
Sit1—3S;
>\.

[

» Given points S;, S;+1, a rescaling gives T; ~

» A push can be thought of as adding a point.

{

Ak )\k+1 i )\i+1
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Adaptive: Small deadline (cont.)

Definition (Clairvoyant strategy)

Chooses when to push knowing point process realization.

Clearly:
» Outperforms adaptive.

» Adds points only at the beginning.
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Adaptive: Small deadline (cont.)

Definition (Clairvoyant strategy)

Chooses when to push knowing point process realization.

Clearly:
» Outperforms adaptive.

» Adds points only at the beginning.

Claim
CosTy > CosTey = CosTy — O(y/nIn? n)

and
Costy = Q(n/Inn).
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Adaptive: Moderate deadlines (2inlnn < r < 2(1+ 6)Inn)

Insight: optimal adaptive/non-adaptive are given by thresholds:

T b g

— th/a_o e
Non-adaptive thresholds n/

T —tnj2-1 B

Adaptive thresholds
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Relaxed adaptive

A relaxed adaptive is an adaptive strategy that:
» Pushes for free.
» Pushes if there are less than n/2 active nodes or 7 is reached.

» Pushes at ¢ only if ¢ > 7 — tg«(;) where K*(t) is the number
of active nodes at time ¢ when following the optimal adaptive
strategy.
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Relaxed adaptive

A relaxed adaptive is an adaptive strategy that:
» Pushes for free.
» Pushes if there are less than n/2 active nodes or 7 is reached.

» Pushes at ¢ only if ¢ > 7 — tx«(;) where K*(¢) is the number
of active nodes at time ¢ when following the optimal adaptive
strategy.

Then, associate a Doob sub-martingale, re-scale, transform, and
show is dominated by a negative drift transformed Poisson
process.
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Additional results

» Results hold also for target set version of the problem.

» Unbounded adaptivity ratio for inhomogenous networks.
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Some questions

» What is the exact adaptivity ratio? Could it be 2 4 o(1)?

There is strong numerical evidence that 2 is the right constant factor.

» Is Costy < Costyg + O(1)?

» Is there a broader class of graphs maintaining the constant gap
result? Maybe high conductance graphs?
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Some questions (cont.)

» What about the inhomogenous setting? Say
» rates satisfy triangle inequality: )\;jl < )\;,i + )\;; for all 7,7, k.
» there is an underlying geometric space so )\Zjl ~ W

» rates indicate whether or not #j is an edge of a HRG.

How should fairness issues be dealt with? 2526
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The End!
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