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Introduction

Studied as:
I Rumor spreading in social networks: content, updates, new

technology ...
I Stochastic epidemic models.
I Viral marketing (where the selection of starting nodes is

crucial). Domingos and Richardson (2001), ...

I Communication off-loading in opportunistic networks.
Whitbeck at al. (2011), Sciancalepore et al. (2014)

Note: Models differ in way time evolves (a/synchronous) and
communication protocol. Demers et al. (1987), Boyd et al. (2006), ...
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Synchronous discrete time rumor spreading in Kn

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 t = 11

t = 12 t = 13 t = 14 t = 15
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Asynchronous continuous time rumor spreading in Kn

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10 t = 11
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Opportunistic networks

Proposal to address overload problem in data networks:
exploit opportunistic communications.



7/26

Introduction Model Analysis Conclusion

Our focuss: Fix deadline scenario

Motivation:
I QoS restrictions in content delivery of news, traffic updates, etc.
I Marketing products such as flights, event tickets, etc.
I Distribution of alerts, say a tsunami warning.
I Sensing/monitoring environment within time windows.

Previous work:
I Studied heuristically for real data. Whitbeck et al. (2011)

I Control theory based algorithms greatly outperform static ones.
Sciancalepore et al. (2014)
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Model
I n nodes.
I Each pair of nodes can meet and gossip. If any one of them is

active, then both become active.
I Continuous time.
I Pairs meet according to a Poisson process of rate λ/n, i.e., time

between two consecutive meetings are exponentials of rate λ/n.

λ/n

t

f (t)=αe−αt

1
2 e−t/2

2e−2t

avg=2avg= 1
2



10/26

Introduction Model Analysis Conclusion

The problem

I Pushes (external activations) have unit cost.
I Opportunistic communications (intra-network activations) have

no cost.
I Nodes send an acknowledgement when they become active.
I At a given horizon/deadline τ all nodes must be active.

Two possible scenarios: Adaptive and non-adaptive.

Natural question:
Compare best adaptive and non-adaptive strategies that
minimize the expected overall number of pushes.
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Main result

Theorem
The adaptivity ratio, i.e., the ratio ρ(τ) between the expectated
costs of the optimal non-adaptive vs the expected cost of the
optimal adaptive strategies, is O(1).

In plain English:

No significant gain in being adaptive!
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Non-adaptive

When i nodes are active, the time Ti until i + 1 nodes become
active is the min of i(n − i) i.i.d. Exp(λ/n), i.e.

Ti ∼ Exp(λi), for λi := λ
n i(n − i).

Recall: E(Ti) = σ(Ti) = 1
λi

.

Henceforth λ = 1.
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Example (n = 50, λ = 1)
t

i

λi

Stochastic domination argument implies that non-adaptive does
not perform more than n/2 pushes (therefore, neither adaptive).



15/26

Introduction Model Analysis Conclusion

Optimal non-adaptive

I Say KN (t) is the number of active nodes at t (right cont.)

I We are interested in determining

CostN := min
k=1,...,n

(k + uk(0))

where uk(t) := E(n −KN (τ−)|KN (t) = k) is the expected
number of inactive nodes just before the deadline given that at
time t there are k active nodes.
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Some observations

I uk(t) is a convex function of k (via submodularity arguments).

I k + uk(t) has a “unique” minima.

I uk(t) is essentially solution to the classical epidemic/diffusion
model dx

dt = −λx(n − x), i.e., the “logistic function”

uk(t) = n(1+o(1))
1 + k

n−k eτ−t + o(1).

I Optimal k is kN = n(1+o(1))
1 + eτ/2 and CostN = 2kN (1+o(1)).
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Adaptive: Large deadline (τ ≥ (2 + δ) ln n)

If at t = 0 there is just 1 active node, then the time until every
node is active is concentrated around 2 ln n +O(1)

Janson (1999)

Thus, the adaptivity ratio is 1 + o(1).
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Adaptive: Small deadline (τ ≤ 2 ln ln n)

I Consider a Poisson process of unit rate in the line.

I Given points Si ,Si+1, a rescaling gives Ti ∼ Si+1−Si
λi

I A push can be thought of as adding a point.

tb b b b b
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Adaptive: Small deadline (cont.)

Definition (Clairvoyant strategy)
Chooses when to push knowing point process realization.

Clearly:
I Outperforms adaptive.
I Adds points only at the beginning.

Claim
CostA ≥ CostCV = CostN −O(

√
n ln2 n)

and
CostN = Ω(n/ ln n).
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Adaptive: Moderate deadlines (2 ln ln n < τ < 2(1 + δ) ln n)

Insight: optimal adaptive/non-adaptive are given by thresholds:

Adaptive thresholds

Non-adaptive thresholds

τ

τ − tn/2−3

τ − tn/2−2

τ − tn/2−1
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Relaxed adaptive

A relaxed adaptive is an adaptive strategy that:
I Pushes for free.
I Pushes if there are less than n/2 active nodes or τ is reached.
I Pushes at t only if t ≥ τ − tK∗(t) where K ∗(t) is the number

of active nodes at time t when following the optimal adaptive
strategy.

Then, associate a Doob sub-martingale, re-scale, transform, and
show is dominated by a negative drift transformed Poisson
process.
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Additional results

I Results hold also for target set version of the problem.

I Unbounded adaptivity ratio for inhomogenous networks.
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Some questions

I What is the exact adaptivity ratio? Could it be 2 + o(1)?
There is strong numerical evidence that 2 is the right constant factor.

I Is CostN ≤ CostA +O(1)?

I Is there a broader class of graphs maintaining the constant gap
result? Maybe high conductance graphs?
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Some questions (cont.)
I What about the inhomogenous setting? Say

I rates satisfy triangle inequality: λ−1
i,j ≤ λ

−1
i,k + λ−1

k,j for all i, j, k.
I there is an underlying geometric space so λ−1

i,j ∼ 1
(dist(i,j))β .

I rates indicate whether or not ij is an edge of a HRG.

How should fairness issues be dealt with?
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The End!
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