THE EVOLUTION OF
 COLLECTIVE STRATEGIES IN COMMUNITIES

Shakti N. Menon

The Institute of Mathematical Sciences, Chennai

in collaboration with:
V. Sasidevan \& Prof. Sitabhra Sinha

$$
\text { June } 30^{\text {th }} 2016
$$

Discussion meeting on "Games, Epidemics and Behaviour", ICTS
"Under what conditions will cooperation emerge in a world of egoists without central authority?"
-Robert Axelrod, "The evolution of cooperation" (1984)

EXTREME ALTRUISM IN DICTYOSTELIUM DISCOIDEUM

WHY COOPERATE?

- Cooperation is an organizational mechanism that is observed over a range of scales in the natural world.
- But... why would any individual agent decide to cooperate in a situation when it would be more personally beneficial to act otherwise?
- Game theory provides a theoretical framework for the understanding of the evolution of cooperative strategies.
- Perhaps the best known, and most used, paradigm for studying such phenomena is the Prisoner's Dilemma (PD) game.

CANONICAL PAYOFF MATRIX FOR THE TWO PLAYER PD GAME

Defect	Cooperate	T: Temptation [to defect while the other cooperates] R: Reward [for mutual cooperation] P: Punishment [for mutual defection] S: Sucker's payoff [for cooperating	
Defect	P, P	T,S	while the other defects]
Cooperate	S,T	R,R	(Typically one sets $R=I, P=S=0$)

For this to be a PD game, we require:

$$
T>R>P>S
$$

In this case, defection is the dominant strategy for both players, and hence the Nash equlibrium* is mutual defection.

[^0]
THE ITERATED PRISONER'S DILEMMA

- While game theory predicts that interactions of this nature will lead to defection, this is not what is observed in experiments or in society.
- One way of understanding this is through the framework of the Iterated Prisoner's Dilemma (IPD)*. Here, the agents choose their action (either cooperate [C] or defect [D]) at each step, based on their choice of strategy.
- The strategy could be deterministic or probabilistic, and may incorporate memory of previous actions. Note that:
- If the IPD game is played X times, and it is known that the game will be played X times, the only rational strategy for a player (arrived at via induction) is to "always defect".
- However, if it is not known that the game will be played X times, other strategies might be lead to better outcomes.

[^1]
AXELROD'S TOURNAMENT

- In I980, Robert Axelrod organised a tournament to find the "best" possible strategy for the IPD.
- Numerous programs, each of which encoded a particular strategy, competed against each other and themselves.
- The winning strategy was "Tit for tat" developed by Anatol Rapoport, where a player simply mimics the opponent's action in the next round.
- It was subsequently shown that a superior strategy is "Win-stay lose-shift", where a player switches action only if unsuccessful.

EMERGENCE OF COOPERATION

- These strategies are limited to the context of two-player systems.
- There have been many mechanisms proposed to understand the emergence of cooperation [Nowak, Nature 3I4, I560-I563 (2006)].
- In a well-mixed populations, which have an equal likelihood of any two agents interacting, natural selection tends to favour defectors.*
- However, this argument doesn't necessarily hold for interactions over social networks. In this case, cooperation can emerge through network reciprocity, i.e. cooperators survive by forming (possibly dynamic) clusters on the network.

[^2]
NETWORK RECIPROCITY

Blue C->C, Red D->D, Yellow C->D, Green D->C

- Nowak and May* demonstrated that when the IPD is played on a square lattice, chaotically changing spatial patterns arise** if agent employs unconditional imitation.
- This is a deterministic strategy in which each agent plays the game with its neighbours and, in the next step, copies the strategy of the most successful neighbour.

[^3][^4]
A PROBABILISTIC UPDATING STRATEGY

- Deterministic strategies implicitly assume perfect transfer of information. In a more generalized setting, agents can copy the action of another with some probability.
- A commonly used probabilistic strategy* is as follows:

Each agent i on a network compares its payoff π_{i} with that of a randomly chosen neighbour $\mathrm{j}\left(\pi_{j}\right)$. If $\pi_{i} \geq \pi_{j}$, the agent repeats its action in the next step, otherwise it copies the action of j with a probability proportional to the difference between their respective payoffs, and dependent on the temptation T and their degrees $\left(k_{i, j}\right)$, namely

$$
\Pi_{i \rightarrow j}=\frac{\pi_{j}-\pi_{i}}{T \max \left(k_{i}, k_{j}\right)}
$$

[^5]
IPD ON ERDÖS-RÉNYI NETWORKS

It was found that when agents playing an IPD on an ErdösRényi (ER) random network use this probabilistic strategy to update their choice of action, three different strategies emerge*.

The adjacent figure [taken from Gómez-Gardeñes, J. et al. (2007)] corresponds to the case $\mathrm{N}=4000$ nodes, and average degree $\langle k\rangle=4$.

[^6]
IPD ON ERDÖS-RÉNYI NETWORKS

Average fraction of cooperating nodes in ER networks of agents playing the IPD game using replicator dynamics. The networks have $\mathrm{N}=1024$ agents with average degree $\langle k\rangle=4$.

The simulations begin with 50% cooperators, and the final result is averaged over 20 trials.

AN UPDATING STRATEGY IN A "NOISY" ENVIRONMENT

In certain situations, stochasticity in the update rule may arise due to some external source (rather than uncertainty in the dynamical state of the system). A simple updating rule that incorporates (tunable external) noise is the Fermi rule*.

Here, each agent i randomly picks a neighbour j and copies its action with a probability proportional to the Fermi distribution function

$$
\Pi_{i \rightarrow j}=\frac{1}{1+\exp \left(-\beta\left(\pi_{j}-\pi_{i}\right)\right)}
$$

where β can be thought of as the inverse of temperature, or "noise", in the decision-making process.

[^7]
FERMI RULE ON LATTICES

On simulating the IPD on a lattice, using the fermi rule, different collective decisions can arise.

For each realization, 50% of the nodes of an 100×100 square lattice [with 4 neighbours and no self interactions] are randomly chosen to be cooperators.

The regimes are demarcated by identifying those areas where >50 of 100 trials result in a specific collective outcome.

FERMI RULE ON RANDOM NETWORKS

The regimes are demarcated by identifying those areas where >50 of 100 trials result in a specific collective outcome.

REWIRING REGULAR NETWORKS

We interpolate between a lattice and a random network using the rewiring procedure similar to that of Watts \& Strogatz (1998)* [from which the figure below is taken].

Regular

Random

$$
p=0
$$

We cycle through all the links randomly and break and rewire each of them (from one of the two originally connected nodes to a randomly chosen node) with a probability p.

[^8]We simulate the IPD over a range of T and β, on a 50×50 square lattice [4 neighbours, no self interactions] and on rewired random networks ($\mathrm{p}=0 . \mathrm{I}, 0.25,0.5,0.75, \mathrm{I} .0$).

Similar results can be obtained by starting with a 50×50 lattice in which each node has a higher degree [8 neighbours, no self interactions].

OBSERVATIONS

- In the high temperature/noise limit ($\beta \rightarrow 0$), pure defection is the only possible outcome.
- The range of temperatures over which pure cooperation exists increases as we increase the rewiring probability p.
- Cooperation emerges at a non-zero value of p, and this critical value is smaller if the average degree increases.
- On increasing the average degree of the network, the tricritical point at the interface of the three phases can be observed at increasingly higher values of T .

MODULAR NETWORKS

- We next consider the case of modular networks, i.e. networks with community organization.
- We interpolate between ER and modular networks using the modularity parameter $r=\rho_{\text {out }} / \rho_{\mathrm{in}}$, the ratio of extra to intra-modular connectivity.

FERMI RULE ON MODULAR NETWORKS

For a range of values of T and β, a highly modular network ($r \sim 0.00 \mathrm{I}$) can exhibit a pattern characterized by the coexistence of multiple collective strategies.

ORDER-DISORDER TRANSITIONS

This result appears to have an intriguing connection with a recent investigation into lsing spins on modular networks*.

When $r \ll$ I there exists a range of temperatures for which individual modules can evolve to different ordered states.

[^9]
REFERENCES

- Axelrod, R., "The Evolution of Cooperation" (Basic Books, 1984).
- Nowak, M.A., Science 3I4, I560-I563 (2006).
- Maynard Smith, J., "Evolution and the Theory of Games" (Cambridge Univ. Press, 1982).
- Nowak, M.A \& May, R. M., Nature 359, 829-829 (I992).
- Santos, F. C. \& Pacheco, J. M., Phys. Rev. Lett. 95, 098104 (2005).
- Gómez-Gardeñes, J. et al., Phys. Rev. Lett. 98,108I03 (2007).
- Szabó G. \& Toke C., Phys. Rev. E 58, 69-73 (1998).
- Watts, D. J. \& Strogatz, S. H., Nature 393, 440-442 (I998).
- S. Dasgupta, R. K. Pan and S. Sinha, Phys. Rev. E 80, 025IOI(R) (2009).
"The only thing that will redeem mankind is cooperation"
-Bertrand Russell (1954)

[^0]: * Unilateral deviation from this situation will not benefit either player

[^1]: * Axelrod, R., "The evolution of cooperation" (Basic Books, I984).

[^2]: * Maynard Smith, J.,"Evolution and the Theory of Games" (Cambridge Univ. Press, Cambridge, I982).

[^3]: * Nowak, M.A \& May, R. M., Nature 359, 829-829 (I992).

[^4]: ** Regardless of whether an agent plays with 4 or 8 neighbours, and whether or not self-interactions are considered.

[^5]: * Santos, F. C. \& Pacheco, J. M., Phys. Rev. Lett. 95, 098 I04 (2005).

[^6]: * Gómez-Gardeñes, J. et al., Phys. Rev. Lett. 98, I08I03 (2007).

[^7]: * Szabó G. \& Toke C., Phys. Rev. E 58, 69-73 (I998).

[^8]: * Watts, D. J. \& Strogatz, S. H., Nature 393, 440-442 (I998).

[^9]: * S. Dasgupta, R. K. Pan and S. Sinha, Phys. Rev. E 80, 025 IOI (R) (2009).

