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–Robert Axelrod, “The evolution of cooperation” (1984)

“Under what conditions will cooperation emerge in a 
world of egoists without central authority?” 



EXTREME ALTRUISM IN DICTYOSTELIUM 
DISCOIDEUM
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WHY COOPERATE?

Cooperation is an organizational mechanism 
that is observed over a range of scales in 
the natural world.

But… why would any individual agent 
decide to cooperate in a situation when it 
would be more personally beneficial to act 
otherwise?

Game theory provides a theoretical 
framework for the understanding of the 
evolution of cooperative strategies.

Perhaps the best known, and most used, 
paradigm for studying such phenomena is 
the Prisoner’s Dilemma (PD) game.
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CANONICAL PAYOFF MATRIX FOR THE 
TWO PLAYER PD GAME

For this to be a PD game, we require:

T > R > P > S

In this case, defection is the dominant strategy for both players, and 
hence the Nash equlibrium* is mutual defection.

Defect Cooperate

Defect P, P T, S

Cooperate S, T R, R

T:  Temptation [to defect while the 
other cooperates]
R:  Reward [for mutual cooperation]
P:  Punishment [for mutual defection]
S:  Sucker’s payoff [for cooperating
while the other defects]

(Typically one sets R=1, P=S=0)

* Unilateral deviation from this situation will not benefit either player



THE ITERATED PRISONER’S DILEMMA

While game theory predicts that interactions of this nature will lead to defection, 
this is not what is observed in experiments or in society.

One way of understanding this is through the framework of the Iterated Prisoner’s 
Dilemma (IPD)*. Here, the agents choose their action (either cooperate [C] or 
defect [D] ) at each step, based on their choice of strategy.

The strategy could be deterministic or probabilistic, and may incorporate 
memory of previous actions. Note that:

If the IPD game is played X times, and it is known that the game will be played 
X times, the only rational strategy for a player (arrived at via induction) is to 
“always defect”.

However, if it is not known that the game will be played X times, other 
strategies might be lead to better outcomes.

* Axelrod, R., “The evolution of cooperation” (Basic Books, 1984).



AXELROD’S TOURNAMENT

In 1980, Robert Axelrod organised a 
tournament to find the “best” possible strategy 
for the IPD.

Numerous programs, each of which encoded a 
particular strategy, competed against each 
other and themselves.

The winning strategy was “Tit for tat” 
developed by Anatol Rapoport, where a player 
simply mimics the opponent’s action in the next 
round.

It was subsequently shown that a superior 
strategy is “Win-stay lose-shift”, where a player 
switches action only if unsuccessful.
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EMERGENCE OF COOPERATION

These strategies are limited to the context of two-player systems.

There have been many mechanisms proposed to understand the 
emergence of cooperation [Nowak, Nature 314, 1560-1563 (2006)].

In a well-mixed populations, which have an equal likelihood of any two 
agents interacting, natural selection tends to favour defectors.*

However, this argument doesn’t necessarily hold for interactions over 
social networks. In this case, cooperation can emerge through network 
reciprocity, i.e. cooperators survive by forming (possibly dynamic) 
clusters on the network.

* Maynard Smith, J., “Evolution and the Theory of Games” (Cambridge Univ. Press, Cambridge, 1982). 



NETWORK RECIPROCITY

Nowak and May* demonstrated 
that when the IPD is played on a 
square lattice, chaotically changing 
spatial patterns arise** if agent 
employs unconditional imitation.

This is a deterministic strategy in 
which each agent plays the game 
with its neighbours and, in the 
next step, copies the strategy of 
the most successful neighbour.

N=99x99 agents, T=1.9

* Nowak, M. A & May, R. M., Nature 359, 829-829 (1992).

** Regardless of whether an agent plays with 4 or 8 neighbours, and whether or not self-interactions are considered.

Blue C->C, Red D->D, Yellow C->D, Green D->C



A PROBABILISTIC UPDATING 
STRATEGY

Deterministic strategies implicitly assume perfect transfer of information. In a 
more generalized setting, agents can copy the action of another with some 
probability. 

A commonly used probabilistic strategy* is as follows:

Each agent i on a network compares its payoff     with that of a randomly 
chosen neighbour j (    ). If               , the agent repeats its action in the next 
step, otherwise it copies the action of j with a probability proportional to the 
difference between their respective payoffs, and dependent on the temptation T 
and their degrees (      ), namely 

⇡i
⇡j ⇡i � ⇡j

⇧i!j =
⇡j � ⇡i

T max(ki, kj)

ki,j

* Santos, F. C. & Pacheco, J. M., Phys. Rev. Lett. 95, 098104 (2005).



IPD ON ERDÖS-RÉNYI NETWORKS

It was found that when agents 
playing an IPD on an Erdös-
Rényi (ER) random network use 
this probabilistic strategy to 
update their choice of action, 
three different strategies 
emerge*.

The adjacent figure [taken from 
Gómez-Gardeñes, J. et al. (2007)] 
corresponds to the case 
N=4000 nodes, and average 
degree            .

* Gómez-Gardeñes, J. et al., Phys. Rev. Lett. 98,108103 (2007).

T hki = 4



IPD ON ERDÖS-RÉNYI NETWORKS

Average fraction of cooperating 
nodes in ER networks of agents 
playing the IPD game using 
replicator dynamics. The 
networks have N = 1024 agents 
with average degree            .

The simulations begin with 50% 
cooperators, and the final result 
is averaged over 20 trials. 

hki = 4



AN UPDATING STRATEGY IN  A 
“NOISY” ENVIRONMENT

In certain situations, stochasticity in the update rule may arise due to some 
external source (rather than uncertainty in the dynamical state of the 
system).  A simple updating rule that incorporates (tunable external) noise is 
the Fermi rule*.

Here, each agent i randomly picks a neighbour j and copies its action with a 
probability proportional to the Fermi distribution function

where     can be thought of as the inverse of temperature, or “noise”, in the 
decision-making process.

* Szabó G. & Toke C., Phys. Rev. E 58, 69-73 (1998).

⇧i!j =
1

1 + exp(��(⇡j � ⇡i))

�



FERMI RULE ON LATTICES

On simulating the IPD 
on a lattice, using the 
fermi rule, different 
collective decisions can 
arise.

For each realization, 
50% of the nodes of an 
100x100 square lattice 
[with 4 neighbours and 
no self interactions] are 
randomly chosen to be 
cooperators.

The regimes are demarcated by identifying those areas where > 50 of 100 trials result in a specific collective outcome.



FERMI RULE ON RANDOM NETWORKS

On simulating the IPD 
on an ER network, using 
the fermi rule, “pure 
cooperation” can also 
be obtained.

For each realization, 
50% of the nodes of an 
ER network [with 
N=2000 and average 
degree             ] are 
randomly chosen to be 
cooperators.

hki = 10

The regimes are demarcated by identifying those areas where > 50 of 100 trials result in a specific collective outcome.



REWIRING REGULAR NETWORKS
We interpolate between a lattice and a random network using the rewiring procedure 
similar to that of Watts & Strogatz (1998)* [from which the figure below is taken].

* Watts, D. J. & Strogatz, S. H., Nature 393, 440-442 (1998).

We cycle through all the links randomly and break and rewire each of them (from one of 
the two originally connected nodes to a randomly chosen node) with a probability p.



We simulate the IPD over a range of T and   , on a 50x50 square 
lattice [4 neighbours, no self interactions] and on rewired random 
networks (p=0.1, 0.25, 0.5, 0.75, 1.0).

�



Similar results can be obtained by starting with a 50x50 lattice in 
which each node has a higher degree [8 neighbours, no self 
interactions].



OBSERVATIONS

In the high temperature/noise limit (           ), pure defection is the 
only possible outcome.

The range of temperatures over which pure cooperation exists 
increases as we increase the rewiring probability p.

Cooperation emerges at a non-zero value of p, and this critical value 
is smaller if the average degree increases.

On increasing the average degree of the network, the tricritical point 
at the interface of the three phases can be observed at increasingly 
higher values of T.

� ! 0



MODULAR NETWORKS

We next consider the case of modular networks, i.e. networks with 
community organization.

We interpolate between ER and modular networks using the modularity 
parameter                    ,  the ratio of extra to intra-modular connectivity.r = ⇢

out

/⇢
in



FERMI RULE ON MODULAR 
NETWORKS

For a range of values of T and    , a highly modular network (r ~ 0.001) can 
exhibit a pattern characterized by the coexistence of multiple collective 
strategies.

�



ORDER-DISORDER TRANSITIONS

This result appears to have an intriguing connection with a recent investigation into 
Ising spins on modular networks*.

* S. Dasgupta, R. K. Pan and S. Sinha, Phys. Rev. E 80, 025101(R) (2009).

When r << 1 there exists a range of temperatures for which individual modules can 
evolve to different ordered states.
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–Bertrand Russell (1954)

“The only thing that will redeem mankind is 
cooperation” 


