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V Colizza,,M Barthelemy,A Barrat and A Vespignani, Comptes Rendus Biologies 330: 364-74 (2007) 



Contagion propagation in society through contact 

Spread of SARS from 

Taiwan, 2003 

Importance of contact network structure 

“The small-worlds of 

public health”  

(CDC director) 

Chen et al, Lect Notes Comp Sci 4506 (2009) 23 

Social contact networks 

over which epidemics 

spread have “modular” 

character 



Regular Network Random Network “Small-world” Network 

Increasing Randomness 

p = 0 p = 1 0 < p < 1 

“Small-world” networks 

   p: fraction of random, long-range connections 

Watts and Strogatz (1998): Many biological, technological and 
social networks have connection topologies that lie between the 
two extremes of completely regular and completely random. 



Structurally speaking 

Why small-world pattern in 

complex networks? 

All the classic “small-world” structural properties of 

Watts-Strogatz small world networks 

e.g., high clustering, short average distance, etc. 

are also seen in modular networks 

Watts-Strogatz 

network 
Modular 

network 
≡ 

R K Pan and S Sinha, EPL 85 68006 (2009) 



Networks have community organizations or modular structure: 

dense connections within certain sub-networks (modules) & 

relatively few connections between modules 

Modules: A mesoscopic organizational 

principle of networks 

Going beyond motifs but more detailed than global description (L, C etc.) 

T-M Kim & P J Park, WIREs Syst Biol & Med, 3 21-35 (2010) 

Micro Meso Macro 



Modularity of  social networks 

Modules: Cohesive groups  

communities with dense internal & 
sparse external connections 

 

Examples of modular social 
networks 

– Cell phone communication 

– Scientific collaborators  

– e-mail communication 

– PGP encryption ”web-of-trust” 

– non-human animals  

J P Onnela et al. PNAS,104,7332 (2007) 

4.6 106 nodes  

7.0  106 links 



Modularity in Social Network of a Karnataka Village  
Data: Bharatha Swamukti Samsthe  

microfinance institution  

Nodes: Individuals 

Links: Social relations 

Described in Banerjee et al, 

Science (2013) 

Node colors represent the community to which they belong 

Village “55” 
Population:1180 individuals 

Largest connected 

component: 1151 individuals 

25 modules 
spin glass simulated annealing method 

Reichardt & Bornholdt, PRE (2006) 

 

Largest module: 127 nodes 

Avg module size: 47 nodes 



Community detection 

(Newman, EPJB, 2004)   

A: Adjacency matrix 

L : Total number of links  

ki : degree of i-th node 

ci : label of module to which i-th node belongs  

A 

B C 

D 

Modules determined through maximization of Q 

by using various optimization techniques 

How to quantify the degree of modularity for a given 

partitioning of a network into communities ? 

 

A suggested measure 



Persistence 
i.e., existence (circulation) of the disease  in the 

population for an indefinite period, i.e., I(t) > 0 as t 

A disease that starts out as an 

epidemic, eventually either dies out 

[I(t)=0] or becomes endemic  

We investigate the long-term transmission of epidemics in 

modular contact networks 

In particular, we focus on the possibility of 

T D Hollingsworth, J Pub Health Policy 30 328-341 (2009) 



SIRS dynamics 

To model the transmission of contagion on the network we 

use 



Basic reproduction number R0 

T D Hollingsworth, J Pub Health Policy 30 328-341 (2009) 

R = 1.75 

Mean number of new infections caused by a single infectious 

individual in a wholly susceptible population (as in the beginning of 

an epidemic): If each infected person on average infects more than 

one other individual, R0 > 1  Epidemic 

Epidemic with 

discrete 

generations 

Epidemic if basic reproduction number R0  N  I > 1 

Initially the epidemic may die out due 

to stochastic fluctuations, but once 

established it grows exponentially 

until pool of susceptible individuals is 

exhausted 

The intensity of an epidemic quantified by the 



Stochastic simulation of contagion propagation 

Modified version of Gillespie algorithm, an exact procedure 

for numerically simulating time evolution of a reaction system 

Algorithm 

 

1. Initialization: Initialize the number of agents in the system, 

rates of infection/ recovery/loss of recovery, and random 

number generators. 

2. Monte Carlo step: Generate random numbers to determine 

the next stochastic event to occur as well as the time interval.   

• If P is the rate of a stochastic event and a number r is 

obtained from uniform random number generator , then time 

to next event is (1/ P)ln(1/r). 

• The probability of a particular event (infection/recovery/loss of 

recovery) to happen is proportional to the ratio of its rate to the 

sum of the rates of all reactions. 

3.   Update: Increase the time step by the randomly generated 

time in Step 2. Update the number of agents in different states 

(S/I/R) based on the event that occurred. 

4.   Iterate: Go back to Step 2 unless the number of infected 

agents is zero or the simulation time has been exceeded. 

 

Note: The rates of IR and RS events are                                                 & 

 governs the nature of the distribution of I and R (low values give exponential, higher give Gaussian) 



Progress of an epidemic in a Karnataka Village  

Susceptible Infected Recovered 



Contagia in empirical modular social contact network are 

surprisingly persistent compared to degree-preserved 

randomized networks which do not have community 

organization 

Difference even more pronounced if modularity is enhanced by selectively 

decreasing inter-modular connectivity 

Modularity promotes disease persistence 

Emp Rand 



The difference in the persistence probability distributions for empirical and 

randomized networks can be measured by the Jensen-Shannon 

divergence, defined for a pair of discrete probability distributions P and Q 

as: 

As modularity Q of empirical contact network increases, JSD 

increases almost linearly (linear corr coeff is 0.89 with p=0). 

Quantifying relation between persistence & modularity 

75 villages of 

southern India 

Social network 

with N = 1151  



Shows the existence of two distinct 

time scales: 

• fast intra-modular diffusion  

• slower inter-modular diffusion 

while random networks show a 

continuous range of time scales 

Distrn of first passage 

times for random walks 

Diffusion process on modular networks 
E.g., Random walker moving from one node to randomly chosen neighboring node 

The presence of disease persistence in contact networks 

with community organization can be understood by analyzing 

In modular networks, the disease spreads slowly from module to module, 

allowing parts of the network to recover before spreading !  

R K Pan & S Sinha, EPL 2009 



A simple model of modular networks 

Model parameter r : Ratio of inter- to intra-modular connection density 

Module ≡ random network 

Very similar behavior w.r.t. degree 

of heterogeneity in module sizes. 

Modules can be of different 

sizes  heterogeneity 

measured by standard deviation 

of module size .  



Random modular networks are Small-World: 

Comparison with Watts-Strogatz model 

E  = [avg path length, ℓ ]-1 = 2 /N(N-1) i>jdij 
Communication 

efficiency 

Clustering 

coefficient 
C  = fraction of observed to potential triads   

     = (1 /N) i2ni / ki (ki - 1) 

WS and Modular networks behave 

similarly as function of p or r 

(Also for between-ness centrality, 

edge clustering, etc) 

In fact, for same N and <k>, we can 

find p and r such that the WS and 

Modular networks have the same 

“modularity” Q 

R K Pan and S Sinha EPL 2009 



m=64 modules of size n=16 avg degree <k> = 12 

Avgd over 100 rlzns 

Existence of communities can make 

highly infectious diseases persistent 
For isolated modules (r=0) and homogeneous networks (r=1) 

epidemic with high infection rate (R0) dies out quickly… 

R0 = 8.5 

…but for 

intermediate 

modularity 

highly infectious 

contagia are 

persistent.  



Persistence in a critical range of r 

r = 0.0002: rapid extinction r = 0.002:  persistence r = 0.02: rapid extinction 

For a critical range of modularity for contact network  

(r ~ 10-3), highly infectious contagia are persistent.  



Persistence in a critical range of modularity 

Distribution of 

persistence time  shows 

bimodal character for 

large r – with the upper 

branch diverging for a 

critical range of 

modularity… 

 

…while for lower r the 

distribution is unimodal 

with avg  decreasing 

rapidly as the modules 

are effectively isolated  

(R0 = 6) Effect of increasing the 

number of modules 



Consider set of random walkers moving on a network s.t. ii(t) = 1 t 

(number conservation) 

i: fraction of random walkers at node i in time t 

 

Walker on node i moves with equal probability to any node directly linked to 

i  Local continuity eqn: i(t+1)  i(t) = jAij j(t)/kj  jAji i(t)/ki  
in-flow out-flow 

Master eqn:      (t+1)   (t) = D  , D: diffusion matrix = (A/k)  I 

i.e., Dij= Aij/kj ij = Lij/kj  D related to Laplacian matrix 

Evolution of walker distrn:  (t+1) = T  (t),    where T = D+I  

T: transition matrix for Markov chain defined on network  

   (t+1) = Tt  (t), T acting as time-propagator for the random walk 

In general, T is not symmetric but… 

 IT related to symmetric normalized Laplacian L(= k – A) by similarity 

transformation: same eigenvalues!  

Mechanism: Existence of distinct  

time-scales in Modular networks 
(R K Pan and S Sinha, EPL 2009) 

Differences in time-scales of modes   gap in spectrum of L    



Eigenvalue spectra of the Laplacian 
Shows the existence of spectral gap  distinct time scales 

Existence of distinct time-scales in Modular networks 

No such distinction in Watts-Strogatz small-world networks 

gap 

No gap 

WS network Laplacian spectra 

Spectral gap in modular 

networks diverges with 

decreasing r 

Modular network Laplacian spectra 

R K Pan and S Sinha, EPL 2009 



The mechanism of enhanced persistence 

Time-scale for global 

diffusion (inverse of 

smallest finite Laplacian 

eigenvalue) decreases 

with increasing  r… 

 

…. so does the time-

scale separation 

between inter- and intra-

modular diffusion events 

(the Laplacian spectral 

gap)  

 

However – the ratio of 

the two show non-

monotonic dependence 

on modularity 

contagion spreads slowly from module to module, allowing 

parts of the network to recover before return of infection!  



Implications 

• Diseases with low R0 may be terminated  by effective 
quarantine procedure to isolate communities from each 
other.  

• Specific groups may be targeted (e.g., school children, 
certain “high-risk-of-infection” professions, long-distance 
commuters, etc) depending on their role in connecting 
the different modules 

• Isolating communities may not be particularly effective in 
preventing highly contagious (high R0) diseases from 
becoming persistent. 

• However a more effective immunization strategy of 
identifying individuals who connect otherwise isolated 
communities and making them high-priority targets for 
vaccination 
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PhD program in Computational Biology @ IMSc 

NNMCB Internships & Visiting Program 

National Network for Mathematical & Computational Biology 

Coordination by Department of Mathematics, IISc Bangalore 

Chennai node: IMSc Chennai (responsible for TN, Kerala and Andhra Pradesh) 

Internships available at various Institutes (application process starts in October) 

Visiting Program allows scientists to spend time at different institutes 

Details in NNMCB website or write to node coordinators 

The Institute of Mathematical Sciences has started a PhD program in 

Computational Biology from 2014 (degree awarded under HBNI) 

Students from Basic Sciences/Engineering/Medicine encouraged to apply with 

scores from a national-level research eligibility exam (GATE, NET, JEST, 

JGEEBLS, BINC, etc.) – shortlisted candidates will be called for interview in 

June/July 

Selected candidates will do 1 year coursework followed by a comprehensive 

exam before commencement of PhD research 
Summer Internships http://www.imsc.res.in/biology_summer_research_programme 

http://www.imsc.res.in/biology_imsc 

http://www.iiserpune.ac.in/~nnmcb 

http://math.iisc.ernet.in/~nmi/ 


