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Overview

• Network design problems

– Designing or re-designing networks to improve desirable 

properties

• Adversarial models

• Focus of this talk

– Strategic adversary

– Non-cooperative game formulations

– Topology sequences

– One-shot games and Markovian variants

– Multi-stage games 

• Relevance to this workshop

– Topology dynamics has direct impact on spread of epidemics

– So, one could design networks for facilitating or curbing 

epidemics, while an adversary may want the opposite
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Network design for a purpose

• Given:

– a network (graph) G=(V, E)

• G could have weights on edges and/or nodes

• a property P defined on G

– a cost budget B

• Edge problems

– Add B edges from Gc = (V, K|V| \ E) to G such that P is minimized 

(or maximized)

• P: global, e.g., diameter, average shortest path length, connectivity, 

etc.; or local, e.g., eccentricity or betweenness centrality of a node

• Problems typically NP-complete if B is part of the input

• Node problems

– If G has positive node weights, select B nodes whose weights 

can be reduced to 0 such that P is minimized

• P: average latency (also NP-complete)

eccentricity(   ) = 2  1
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Adversarial action over time

• Consider an adversary (A)

– Adversarial action: remove edges: Gt →a Gt+1⊂Gt

– Loss of edges typically results in worse value of P

• Network designer (D) has to take action

– Just restore the old topology: Gt →a Gt+1 →d Gt

– OR add different edges:  Gt →a Gt+1 →d G’t ≠ Gt

• The space of all possible topologies is a partial 

order (po-set), and D and A would bounce 

around that po-set
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Po-set of network topologies
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G({1,2,3,4},∅)

K4

A sequence of actions (aj|dj)* by A & D
will result in a “walk” through this po-set.

Goal: study interesting properties of this dynamical process under different adversarial models.



Tractable case: Dynamics along a sequence of operationally 

allowed or “policy-compliant” topologies

Policy-compliant topologies

• Nodes for topology G
i
: V

i 
, set of edges: E

i

• Densification property: ∀i: V
i 
= V, but

E
0
⊂E

1
⊂…⊂E

K−2
⊂E

K−1

• If |Ei\Ei-1|=1, it is basically a vertical path of 

length K through the po-set of topologiesG0 G1 Gk-1

Base topology

Examples and Rationale

• Each edge may correspond to a new pair-wise association, e.g., shared key

• The order of associations is important since dependencies may be involved

• If two managers M1 and M2 are given a shared key, and their employees S1

and S2 are too, removal of the M1—M2 relationship would invalidate S1—S2

relationship as well

• Thus, attack on edge j in state GK-1 would result in its removal and 

―backtracking‖ to the best policy compliant topology
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Benign adversary

• Benign adversary

– Attacks according following some model (e.g., at random 

locations) and incurs zero cost

– Examples: wireless interference, thermal noise

– Actions not in step with that of network designer (D)

– D wants to optimize a given property P and incurs action costs 

(to add / edit / maintain edges)

• Solution approach

– Stochastic Dynamic Programming but concentrate on 

instantaneous states to avoid dimensionality curse 

– This yields a modified myopic policy

– E. N. Ciftcioglu, K. S. Chan, A. Swami, D. H. Cansever and P. 

Basu, “Topology Control for Time-Varying Contested 

Environments”, MILCOM 2015.
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Focus of talk: strategic adversary

• Strategic adversary (A)

– Observes the network and attacks where it hurts the most

– Examples: cyber attacks

– D and A incur costs for actions defend (d), grow (g), or attack (a)

– Actions occur simultaneously with that of network designer (D)

– Solution approach: model the scenario as a 2-player one-shot 

non-cooperative game

• Rules of the game (when not restricted by a policy 

compliant sequence)
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(a,d) (d)(a)

(a,g) (g)
(a)

Initial network

A: a

D: d | g



Monitor placement game (nodes)

– If D places monitor on node 

v and A guesses correctly

and attacks v, then 

• Utility, U = 0

– If D places monitor on v and

A guesses wrongly and 

attacks the monitor port of 

node w ≠ v, then

• Utility, U = 1/ev
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v

w

• Where to place a 

monitor/controller in presence of a 

strategic adversary (A)?

• Optimization metric: eccentricity

of monitor node v

• ev: max {shortest paths from v} 

First, consider a related framework where actions are on nodes

D can place monitor at any node

A can attack monitor port at any node



Non-cooperative game (A vs. D)

• Consider probabilistic strategies for

– Placement (by D): p = (p1,…, pn)

– Attack (by A): q = (q1, …, qn)

• Since ev ≥ 1, 0 ≤ U ≤ 1

– Low U: bad; High U: good

• Expected utility: quadratic form
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Solution to the Matrix Game

• One-shot 2-player zero-sum bimatrix game with standard 
assumptions of rationality, knowledge etc.
– Mixed Nash equilibrium must exist

• Expected utility: E[U] = V =

• M has special structure => solvable in closed form by 
using the principle of indifference

• Equilibrium solution structure
– Placement probabilities,

– Attack probabilities, 

– (Utility at Nash Equilibrium)
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(Tends to place at high eccentricity nodes!)
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At topology state k, D and A act simultaneously:

Designer Action: D either chooses to protect one of the edges, or further 

grow the network by adding a edge, either: 

 Defend an existing edge e
i
, or

 Try to grow the network by adding edge e
k+1

Adversarial Action: A intelligently tries to disrupt network functionality by 

attacking edges, either:

 Attack an existing edge e
j

 Attack an ―anticipated‖ edge e
k+1

Policy-compliant topology game
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G0 Gi Gj Gk Gk+1 GK-1
e

k+1

e
i

e
j

current topology

[Ciftcioglu, Pal, Chan, Cansever, Swami, Singh, and Basu, WiOpt 2016]



• State: s(t): topology index

• Attack success probability p (results in state transitions)

• If an edge is not defended, A disrupts it with probability p

• If attack successful, D has to backtrack to the allowed topology that can be 
formed by the remaining edges

• If attack unsuccessful, network can grow depending on D’s strategy.

State Transitions
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G0 Gi Gj Gk Gk+1 GK-1
e

k+1

e
i

e
j

A: a(ej); D: d(ei) A: a(ej) 
D: d(ej)

A: a(ej) 
D: g(ek+1)

p

1 - p



Payoffs and Costs

Designer: (d
k
)

- Cost of defending existing edge: δ

- Cost for adding a new edge: γ
Typical Assumption: (δ < γ): growing edges more costly

Adversary: (z
k
)

- Cost of attacking existing edge: β

- Cost for attacking an anticipated edge: α
Typical Assumption: (β < α): existing edges more established

Overall utility: Network property cost (gk) + Own operational costs:

Designer:  minimize g
k
+ d

k
≡ maximize – g

k
– d

k

Adversary: maximize g
k
– z

k

For many results, we assume δ = γ = β = α = 0 => zero-sum game
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Game does not possess pure-strategy Nash equilibrium by 

inspection unless special conditions where p very low: 

• Strategy of growth optimal if

• If gk concave decreasing,  growth optimal if

• If gk convex decreasing, no pure strategy by inspection if

In general, both D & A play mixed (probabilistic) strategies

Properties of Nash Equilibria

A: Attacked edge ID

Defend

Grow

D

(gk: Network property cost at topology state k) 
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Game matrix at state k)



Decisions to network evolution

• Designer and attacker play mixed (probabilistic) 

strategies for choosing edges

• Result: stochastic topology dynamics

– Due to randomness in actions, and attack success

• Can be modeled by a Markov game

– What are the structural properties of mixed 

strategies?

– What are the state transition probabilities? 

(Computable from game rules and strategy profiles)

– What is the steady state probability of being in each 

topology?
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Incentives for Designer & Adversary

• Initial intuition

– Adversary: targets important edges to inflict maximum 

damage, and

– Designer: prioritizes defense of important edges

• However, two phenomena

– Adversary's view: Since D might defend the most 

crucial edges, any attack on those edges might be 

neutralized, therefore A shifts focus on attacking 

―important‖ edges but not the ―most important‖ ones 

– Designers view: If p is small, why not take chances 

and try to grow the network?
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Adversary attacks less 

important links with greater 

probability to avoid hitting a 

defense wall!

Equilibria exhibit nice 

distributional monotonicity 

for monotonic graph properties

Designer acts as expected,

prioritizes more important

links to avoid deep 

backtracking

Properties of Mixed Nash Strategies
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Obtain state transition probabilities γ
k,j

from state k to state j as a function of 

mixed strategy probabilities:

Designer: (r∗
k
(1), ..., r∗

k
(k), r∗

k
(k + 1))

Adversary: (q∗
k
(1), ..., q∗

k
(k), q∗

k
(k+1))

and attack success probability p:

Degrading to base topology

Growing to next topology

Backtracking to topology j from k, j<k

Staying at the same topology

Strategy Probabilities to 

Transition Probabilities
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Steady State Probabilities

Once mixed strategies and resulting state transition probabilities

found, construct State transition matrix

Balance equations and equilibrium distribution found using

Along with
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Starting from G0, the network can grow to higher states for lower p

Network property: Harmonic mean of path lengths

No operational costs, start from base topology

Numerical Results
Varying Attack Success Probability
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When the adversary is capable of performing with lower 
operational costs α , the network can eventually evolve to larger 
sizes!

Network property: Eccentricity

Numerical Results
Effect of Operational Costs
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Beyond one-shot games

• So far, D and A have played repeated instances of one-

shot games

• Being more adventurous 

is ideal sometimes

– e.g., the gk functions can 

have complex structures 

that result in suboptimal 

behavior

• Play a multi-stage game

– Maximize a discounted sum of rewards over a time horizon

– With no adversary – this is the MDP framework

– With adversary – multi-stage Markov game
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one-shot D-strategy may
get stuck here



Multi-stage games

• Value functions of D & A consider potential future rewards:

• Mixed Nash for this game exhibits similar monotonicity properties as 

the one-shot game

• Algorithms from Markov-games literature

– Q-learning

Iterative:

– Rollout policies

• Consider all one-step (a, d | g) action pairs and simulate further actions 

(Monte Carlo) using base policies: then update the game matrix entries

• This is less computationally intensive than Q-learning
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Numerical results
Steady state topologies
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Q-Learning is able to take the network to higher states than Rollout and one-shot

p = 0.5

The exploration step of
Q-Learning randomly selects 
growth strategies even at 
high k, when the risk of 
backtracking outweighs gain 
from growth.



Numerical results
Time-averaged network cost gk
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Q-Learning is generally the best policy in the mix

Sometimes at high p, the 
one-shot policy does well
compared to Q-Learning and
Rollout, because it tends to
protect from backtracking
all the way to G0.



Ongoing research directions

• Relax assumptions about 

– complete knowledge of the network state

– knowledge of the payoff structures

– knowledge of others’ actions and resources

• Gain fundamental understanding of co-evolution 

of networks in adversarial settings resulting from

– interaction between multiple networks

– interaction between network structure and information 

flow

• Decentralized behavior in adversarial settings 

– multi-party games, coalition formation etc.
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