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we saw earlier

exponential gap between best and worst
equilibria

which of these equilibria is achievable?

OPEN: Find any equilibrium in polynomial time.

changes in potential can be exponentially small



what if agents can join and leave the network?

simplest case

phase 1: agents join the network in sequence, choosing 
their minimum cost path on arrival

phase 2: agents move to cheaper path from their existing 
path in arbitrary order until equilibrium is reached
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the equilibrium produced at the end costs at most poly-log times optimal cost
[Charikar, Karloff, Matheiu, Naor, Saks ’08]



only need to show this for phase 1

potential argument works for phase 2

the equilibrium produced at the end costs at most poly-log times optimal cost
[Charikar, Karloff, Matheiu, Naor, Saks ’08]



• A dual fitting argument

• For any vertex u, let
• bu = exclusive cost of u on arrival

• su = shared cost of u on arrival

• A vertex u will have a ball centered at it if
• su ≤ 2 bu log n

the equilibrium produced at the end costs at most poly-log times optimal cost
[Charikar, Karloff, Matheiu, Naor, Saks ’08]



why is this sufficient?

clearly, Σu bu is the overall cost

also, 

bu ≤ su

and

Σu bu ≥ Σu su / log n



• A dual fitting argument

• For any vertex u, let
• bu = exclusive cost of u on arrival

• su = shared cost of u on arrival

• A vertex u will have a ball centered at it if
• su ≤ 2 bu log n

• If bu in (δk, δk+1] and su in (γj, γj+1 ], then add a ball of radius δk/8
centered at u in dual (j, k)

the equilibrium produced at the end costs at most poly-log times optimal cost
[Charikar, Karloff, Matheiu, Naor, Saks ’08]



when are the balls non-intersecting?

Lemma: If δ = 2 and γ = 1 + 1/8 log n, then the 
balls in a group are non-intersecting.



OPEN: What is the quality of the equilibrium reached if 
arrivals and improving moves are interleaved?



theorem: if agent departures is allowed, then 
poly(n)

[Chawla, Naor, P., Singh, Umboh]

OPEN: What is the quality of the equilibrium reached if 
arrivals and improving moves are interleaved?



theorem: if agent departures is allowed, then 
poly(n)

what can a central controller do?

[Chawla, Naor, P., Singh, Umboh]

OPEN: What is the quality of the equilibrium reached if 
arrivals and improving moves are interleaved?



if the controller suggests (improving) moves to 
attain equilibrium between arrival/departure 

phases

theorem: equilibrium within log n of optimal

[Chawla, Naor, P., Singh, Umboh]



partition graph into subgraphs of diameter 2k, for 1 ≤ k ≤ 
log n (embed into a distribution of HSTs)



hope: vertices with edges of same length are well-
separated
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separated



improving move removes an 
overcharge
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improving move removes an 
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improving move removes an 
overcharge

but can create a different one

repeat 

potential argument shows 
sequence is finite 

eventually, there is no overcharging



how do we extend to multiple arrivals/departures? 

now, overcharging on multiple subgraphs

(1) overcharging only done by leaves of the routing 
tree

except possibly one subgraph charged by 2 non-
leaves

(2) if there is overcharging, then there is an 
improving move that maintains invariant (1)

(3) potential decreases over time

(4) eventually, there is no overcharging



summary 

open: can we find any equilibrium in polynomial time?

if agents join/leave/move arbitrarily, inefficiency can be 
linear

but controlling the moves yields log inefficiency



thank you

questions?


