Routing in Cost-shared Networks: Equilibria and Dynamics (Part 2)

Debmalya Panigrahi

we saw earlier

exponential gap between best and worst equilibria

which of these equilibria is achievable?

we saw earlier

exponential gap between best and worst equilibria

which of these equilibria is achievable?

OPEN: Find **any** equilibrium in polynomial time.

changes in potential can be exponentially small

what if agents can join and leave the network?

simplest case

phase 1: agents join the network in sequence, choosing their minimum cost path on arrival

phase 2: agents move to cheaper path from their existing path in arbitrary order until equilibrium is reached

only need to show this for phase 1

potential argument works for phase 2

- A dual fitting argument
- For any vertex u, let
 - $\mathbf{b}_{\mathbf{u}} = \underline{\text{exclusive cost}}$ of \mathbf{u} on arrival
 - $\mathbf{s}_{\mathbf{u}} = \underline{\mathbf{shared cost}}$ of \mathbf{u} on arrival
- A vertex **u** will have a ball centered at it if
 - $s_{ij} \le 2 b_{ij} \log n$

why is this sufficient?

```
clearly, \Sigma_u b_u is the overall cost also, b_u \le s_u and \Sigma_u b_u \ge \Sigma_u s_u / \log n
```

- A dual fitting argument
- For any vertex u, let
 - $\mathbf{b}_{\mathbf{u}} = \underline{\text{exclusive cost}}$ of \mathbf{u} on arrival
 - $\mathbf{s}_{\mathbf{u}} = \underline{\mathbf{shared cost}}$ of \mathbf{u} on arrival
- A vertex **u** will have a ball centered at it if
 - $s_u \le 2 b_u \log n$
- If b_u in $(\delta^k, \delta^{k+1}]$ and s_u in $(\gamma^j, \gamma^{j+1}]$, then add a ball of radius $\delta^k/8$ centered at u in dual (j, k)

when are the balls non-intersecting?

Lemma: If $\delta = 2$ and $\gamma = 1 + 1/8 \log n$, then the balls in a group are non-intersecting.

OPEN: What is the quality of the equilibrium reached if arrivals and improving moves are interleaved?

OPEN: What is the quality of the equilibrium reached if arrivals and improving moves are interleaved?

theorem: if **agent departures** is allowed, then **poly(n)**

[Chawla, Naor, P., Singh, Umboh]

OPEN: What is the quality of the equilibrium reached if arrivals and improving moves are interleaved?

theorem: if **agent departures** is allowed, then **poly(n)**

[Chawla, Naor, P., Singh, Umboh]

what can a central controller do?

if the controller suggests (improving) moves to attain equilibrium between arrival/departure phases

theorem: equilibrium within log n of optimal

[Chawla, Naor, P., Singh, Umboh]

partition graph into subgraphs of diameter 2^k, for 1 ≤ k ≤ log n (embed into a distribution of HSTs)

hope: vertices with edges of same length are wellseparated

hope: vertices with edges of same length are wellseparated

improving move removes an overcharge

improving move removes an overcharge but can create a different one

improving move removes an overcharge but can create a different one

repeat

improving move removes an overcharge but can create a different one

repeat

potential argument shows sequence is finite eventually, there is no overcharging

how do we extend to multiple arrivals/departures?

now, overcharging on multiple subgraphs

- (1) overcharging only done by leaves of the routing tree except possibly one subgraph charged by 2 non-leaves
 - (2) if there is overcharging, then there is an improving move that maintains invariant (1)
 - (3) potential decreases over time
 - (4) eventually, there is no overcharging

summary

open: can we find any equilibrium in polynomial time?

if agents join/leave/move **arbitrarily**, inefficiency can be **linear**

but controlling the moves yields log inefficiency

thank you

questions?