Routing in Cost-shared Networks: Equilibria and Dynamics (Part 1)

Debmalya Panigrahi

on an undirected network

a set of **agents** want to route traffic from their respective source to sink vertices

each edge used in routing has a <u>fixed cost</u> that is <u>shared equally</u> by agents using the edge

minimize sum of cost of edges used in routing

Steiner forest problem 2-approx [Agarwal-Klein-Ravi '91, Goemans-Williamson '92]

Steiner forest problem 2-approx [Agarwal-Klein-Ravi '91, Goemans-Williamson '92]

However...

agents are strategic!

(want to minimize their own cost)

this is optimal!

this is optimal!

But, the situation can be much worse ...

agent's strategy: routing path

agent's payoff: negative of the shared cost

agent's strategy: routing path

agent's payoff: negative of the shared cost

each agent aims to maximize payoff, i.e., minimize cost

equilibrium: no agent has a less expensive routing path

equilibrium: no agent has a less expensive routing path

do equilibriums always exist?

equilibrium: no agent has a less expensive routing path

do equilibriums always exist? yes, reason coming up soon ...

equilibrium: no agent has a less expensive routing path

do equilibriums always exist? yes, reason coming up soon ...

how suboptimal can an equilibrium be?

unfortunately, very suboptimal

price of anarchy: max (over all equilibria) ratio of total cost at an equilibrium state to optimal cost (inefficiency of <u>worst</u> equilibrium) how inefficient is the <u>best</u> equilibrium? i.e., controller chooses routing paths but they need to be **in equilibrium**

price of stability: min (over all equilibria) of total cost at an equilibrium state to optimal cost

price of stability: min (over all equilibria) of total cost at an equilibrium state to optimal cost

price of stability: min (over all equilibria) of total cost at an equilibrium state to optimal cost

this is a **potential game**: there exists a global function of the strategies played by all agents which strictly decreases (or strictly increases) for every valid move (change in strategy by an agent that decreases her cost)

price of stability: min (over all equilibria) of total cost at an equilibrium state to optimal cost

this is a **potential game**: there exists a global function of the strategies played by all agents which strictly decreases (or strictly increases) for every valid move (change in strategy by an agent that decreases her cost)

corollary: there always exists an equilibrium

edge **e** used by n_e agents potential of edge **e** is $\phi_e = c_e (1 + 1/2 + 1/3 + ... + 1/n_e)$

in the example, if agent moves from 1 to 2 $\Delta \phi = c_2/(n_2+1) - c_1/n_1$ = difference in shared cost

Initialize with optimal solution and run to equilibrium

$$\sum_{e \in EQ} c_e \leq \phi_{EQ} \leq \phi_{OPT} \leq \left(\sum_{e \in OPT} c_e\right) + l_n$$

[Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden '04]

OPEN: Can this logarithmic ratio be improved?

OPEN: Can this logarithmic ratio be improved?

- Li '09: O(log n / log log n)
- Best lower bounds are small constants
- ADKTWR '04: **O(log n)** is the best possible for directed graphs

OPEN: Can this logarithmic ratio be improved?

- Li '09: O(log n / log log n)
- Best lower bounds are small constants
- ADKTWR '04: **O(log n)** is the best possible for directed graphs

special case: broadcast games

- each vertex has an agent

- all agents route to a common gateway destination

Fiat-Kaplan-Levy-Olonetsky-Shabo '06: **O(log log n)** Liggett-Lee '13: **O(log log log n)** Bilo-Flammini-Moscardelli '13: **O(1)**

broadcast games

• <u>Property</u>: at equilibrium, the routing paths form a tree

- if there is a cycle, then there exists a vertex v through which two different routing paths are used to go to the root (say by agents x and y)
- if shared cost of agent x
 ≤ shared cost of agent y, then
 x can move to y's path
 contradicting equilibrium condition

broadcast games

 \mathbf{v} is responsible for edge $\mathbf{e}_{\mathbf{v}}$

the dual fitting technique

if the balls do not intersect, then ratio is α

if the balls do not intersect, then ratio is α

if the balls are grouped into β groups, and the balls in any group do not intersect, then the approximation factor is $\alpha \beta$ broadcast games: an O(log n) pos bound

claim: no two balls in the same group intersect

what about multicast games?

Main challenge Mechanism for transferring responsibility

recent progress[Freeman, Haney, P.]

summary

equilibria in network games can have linear inefficiency

but the best equilibrium has log inefficiency

open: does it only have **constant** inefficiency?

yes, for broadcast and multicast on quasi-bipartite

thank you

questions?