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on an undirected network

a set of agents want to route traffic from their 
respective source to sink vertices

each edge used in routing has a fixed cost
that is shared equally by agents using the 

edge

minimize sum of cost of edges used in 
routing
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Steiner forest problem
2-approx [Agarwal-Klein-Ravi ’91, Goemans-Williamson 

’92]



Steiner forest problem
2-approx [Agarwal-Klein-Ravi ’91, Goemans-Williamson 

’92]

However…



agents are strategic!

(want to minimize their own cost)
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this is optimal!



this is optimal!

But, the situation can be much worse …



n agents
s t
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This is (just) a game! 

agent’s strategy: routing path

agent’s payoff: negative of the shared 
cost

each agent aims to maximize payoff, i.e., minimize 
cost
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This is (just) a game!

equilibrium: no agent has a less expensive 
routing path

do equilibriums always exist? 
yes, reason coming up soon …

how suboptimal can an equilibrium 
be?



unfortunately, very suboptimal 

price of anarchy: max (over all equilibria) ratio of 
total cost at an equilibrium state to optimal cost

(inefficiency of worst equilibrium)

n agents
s t



how inefficient is the best equilibrium? 
i.e., controller chooses routing paths
but they need to be in equilibrium

price of stability: min (over all equilibria) of 
total cost at an equilibrium state to optimal 

cost
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price of stability: min (over all equilibria) of 
total cost at an equilibrium state to optimal 

cost

this is a potential game: there exists a global 
function of the strategies played by all agents 

which strictly decreases (or strictly increases) for 
every valid move (change in strategy by an agent 

that decreases her cost)

corollary: there always exists an equilibrium



edge e used by ne agents
potential of edge e is φe = ce (1 + 1/2 + 1/3 + … + 1/ne)

in the example, if agent moves from 1 to 2
Δ φ = c2/(n2+1) – c1/n1

= difference in shared cost

Initialize with optimal solution and run to equilibrium

[Anshelevich, Dasgupta, Kleinberg, Tardos, Wexler, Roughgarden ’04]
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special case: broadcast games
- each vertex has an agent

- all agents route to a common gateway 
destination

OPEN: Can this logarithmic ratio be improved?

• Li ’09: O(log n / log log n)
• Best lower bounds are small constants
• ADKTWR ‘04: O(log n) is the best possible for directed graphs

Fiat-Kaplan-Levy-Olonetsky-Shabo ’06: O(log log n)
Liggett-Lee ’13: O(log log log n)
Bilo-Flammini-Moscardelli ’13: O(1)
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broadcast games

• Property: at equilibrium, the 
routing paths form a tree

• if there is a cycle, then there 
exists a vertex v through which 
two different routing paths are 
used to go to the root (say by 
agents x and y)

• if shared cost of agent x

≤ shared cost of agent y, then

x can move to y’s path 

contradicting equilibrium condition

r

v

x y



broadcast games

v is responsible for edge ev

v

ev



the dual fitting technique
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the dual fitting technique
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if the balls are 
grouped into 
β groups, and 
the balls in 
any group do 
not intersect, 
then the 
approximation 
factor is α β

if the balls do 
not intersect, 
then ratio is α



broadcast games: an O(log n) pos bound

log n groups of balls
if cost(ev) in [2k-1, 2k] place ball of radius 2k/16 in group 

k

claim: no two balls in the same group intersect

u v



what about multicast games?

Main challenge
Mechanism for 
transferring responsibility

who is responsible for edge e? 



recent progress 

multicast games on quasi-bipartite graphs

price of stability is O(1)

[Freeman, Haney, P.]

agent-agent path is of length ≤ 2 



summary 

equilibria in network games can have linear inefficiency

but the best equilibrium has log inefficiency

open: does it only have constant inefficiency?

yes, for broadcast and multicast on quasi-bipartite



thank you

questions?


