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Introduction

There are many modes by which epidemics and information spread
on networks:

Simple random walks

Rumor spreading mechanisms

Random walks with speed-up techniques

Parallel random walks

SIR and SIS epidemics models
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Introduction

Problem Statement

Introducing Cobra Walks

Some node of a graph starts with a token/infection/piece of
information

Spreads information by sending it to k neighbors

Any node infected at time t spreads to k neighbors

Process continues forever
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Introduction

Problem Statement

Coalescing-branching (cobra) walks defined

Static graph G = (V ,E ) on n nodes.

Pick any u′ ∈ V and place a token at u′.

For each u ∈ V , if there is more than one token at node, all
tokens at that node coalesce into one.

Each token then becomes k tokens (branching).

For each u ∈ V , each token at u independently chooses u.a.r
some v ∈ N(u) and moves to it.

For this talk, k = 2.



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

Illustration of a cobra walk



Coalescing-Branching (Cobra) Random Walks

Introduction

Problem Statement

What do we want to know about cobra walks?

1 How long does it take for a cobra walk to visit every node in a
graph?

For standard random walks Θ(n3) [Feige 1995]

2 What are the long term-dynamics of a cobra walk?

What percentage of nodes of a graph are ”infected” as
t →∞?
Is there an analog to a stationary distribution or mixing time?

3 What are possible applications of cobra walks?
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Introduction

Problem Statement

Challenges in analyzing cobra walks

Size of active set is non-monotonic.

Lack of independence in number and distribution of pebbles

Dynamics of cobra walks governed by graph topology (e.g.
number of common neighbors of nodes)...

... and by current distribution of pebbles on the walks.
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Introduction

Context and Related Work

Cobra Walk as a Model for Epidemics

Cobra walks are a discrete-time version of the SIS
(susceptible-infected-susceptible) epidemic mode with
probability 0 of extinction:

Branching simulates probability of infecting neighbors
Coalescing simulates receiving infection from multiple
neighbors
Recovery time (return to susceptible state) is one time step

Extensive work in related contact processes [Harris 1974;
Durrett 1980; Ganesh-Massoulié-Towsley 2005;
Berger-Borgs-Chayes-Saberi 2005]

Most work focuses on questions of extinction time and
persistence of the epidemic [Durret 2010, Kessler 2007],
[Draief and Ganesh 2011]

Some models involve a mean-field approximation of some part
of the epidemic. [Van Mieghem 2011].
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Introduction

Context and Related Work

Cobra Walks vs Rumor Spreading

Rumor spreading is well-studied [Chierichetti and Panconsesi
2010, Chierichetti et al 2011, Giakkoupis and Sauerwald 2012,
Fountoulakis and Panagiotou 2010, and many others..]

Fast coverage of any graph O(n log n) [Feige et al 1990]

Set of nodes with rumor monotonically non-decreasing

Message complexity can be high
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Introduction

Context and Related Work

Cobra Walks vs Parallel Random Walks

Parallel (independent) random walks [Alon et al 2008, Elsaesser
and Sauerwald 2009, Efremenko and Reingold 2009]

Can provide significant speed up for many classes of graphs
(e.g. expanders)

Cover time not necessarily equivalent to cobra walks

Independence of walks a powerful tool in proofs
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Summary of Results

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

Lower bound: Ω(n log n).

Trees: O(n log n) [Dutta-Pandurangan-R-Roche 2013].

d-Dimensional grid: O(n
1
d ) [Dutta-Pandurangan-R-Roche

2013].

Conductance Φ and degree d : O
(
d4 log2 n

Φ2

)
[Mitzenmacher-R-Roche 2016].

O(log n) bound for expanders [Cooper-Radzik-Rivera 2016]

Cover time for an arbitrary graph is O(n11/4 log n)
[Mitzenmacher-R-Roche 2016].



Coalescing-Branching (Cobra) Random Walks

Summary of Results

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

Lower bound: Ω(n log n).

Trees: O(n log n) [Dutta-Pandurangan-R-Roche 2013].

d-Dimensional grid: O(n
1
d ) [Dutta-Pandurangan-R-Roche

2013].

Conductance Φ and degree d : O
(
d4 log2 n

Φ2

)
[Mitzenmacher-R-Roche 2016].

O(log n) bound for expanders [Cooper-Radzik-Rivera 2016]

Cover time for an arbitrary graph is O(n11/4 log n)
[Mitzenmacher-R-Roche 2016].



Coalescing-Branching (Cobra) Random Walks

Summary of Results

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

Lower bound: Ω(n log n).

Trees: O(n log n) [Dutta-Pandurangan-R-Roche 2013].

d-Dimensional grid: O(n
1
d ) [Dutta-Pandurangan-R-Roche

2013].

Conductance Φ and degree d : O
(
d4 log2 n

Φ2

)
[Mitzenmacher-R-Roche 2016].

O(log n) bound for expanders [Cooper-Radzik-Rivera 2016]

Cover time for an arbitrary graph is O(n11/4 log n)
[Mitzenmacher-R-Roche 2016].



Coalescing-Branching (Cobra) Random Walks

Summary of Results

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

Lower bound: Ω(n log n).

Trees: O(n log n) [Dutta-Pandurangan-R-Roche 2013].

d-Dimensional grid: O(n
1
d ) [Dutta-Pandurangan-R-Roche

2013].

Conductance Φ and degree d : O
(
d4 log2 n

Φ2

)
[Mitzenmacher-R-Roche 2016].

O(log n) bound for expanders [Cooper-Radzik-Rivera 2016]

Cover time for an arbitrary graph is O(n11/4 log n)
[Mitzenmacher-R-Roche 2016].



Coalescing-Branching (Cobra) Random Walks

Summary of Results

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

Lower bound: Ω(n log n).

Trees: O(n log n) [Dutta-Pandurangan-R-Roche 2013].

d-Dimensional grid: O(n
1
d ) [Dutta-Pandurangan-R-Roche

2013].

Conductance Φ and degree d : O
(
d4 log2 n

Φ2

)
[Mitzenmacher-R-Roche 2016].

O(log n) bound for expanders [Cooper-Radzik-Rivera 2016]

Cover time for an arbitrary graph is O(n11/4 log n)
[Mitzenmacher-R-Roche 2016].



Coalescing-Branching (Cobra) Random Walks

Summary of Results

Open Problems

Close the substantial gap between upper and lower bounds for
general graphs.

Tight bounds in terms of conductance and expansion of the
graph.

Analyze other measures of interest.

Better bounds for special graph classes.

Explore implications for real-world processes.
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Cover Time as a Function of Conductance

Definitions

Conductance of a Graph

A measure of how well the graph locally expands everywhere.

Define the volume of a set S ⊆ V to be the sum of the
degrees of the vertices in S .

Let the conductance of a set S ⊆ V of vertices be the ratio of
the number of edges between S and V \ S to the volume of
S .

Formally, define φ(S) = |∂(S)|/vol(S), where
∂(S) =

∑
(u,v):u∈S,v /∈S 1 and vol(S) =

∑
u∈S d(u).

Then the conductance Φ of the graph is the minimum
conductance of a set whose volume is at most half the volume
of V .

Formally, Φ is minS :vol(S)≤vol(V )/2 φ(S).

A constant-degree constant-conductance graph is referred to
as an expander.
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Cover Time as a Function of Conductance

Outline of Analysis

Challenges and Techniques

Challenges

The number of active nodes is non-monotonic.

Though the “pebbles” make independent branching moves,
coalescing introduces dependencies.

Analysis plan:

Introduce Walt , a process that stochastically dominates cobra
walks.

Break the process into O(log n) epochs of length O(log n/Φ2).

In each epoch, show that any node v has a constant
probability of being covered.

This gives the desired high probability bound of O(log2 n/Φ2)
for cover time.
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Cover Time as a Function of Conductance

Analysis

Description of Walt .

There are δn pebbles distributed arbitrarily around the graph.

No more branching or coalescing occurs.

Pebbles are arbitrarily labeled using a total order.

First two pebbles at v at time t continue to move
independently.

Third and higher-ranked pebbles at v at time t chose one of
the destinations of the first two pebbles independently with
probability 1/2.
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Cover Time as a Function of Conductance

Analysis

Walt covers G in O(log2 n/Φ2) rounds

Main idea:

Show that each node of G will be covered by at least one
pebble in O(log n/Φ2) steps with constant probability,

Repeat O(log n) times to get a high probability bound on
every node.

Therefore,

Need to show that probability that any pebble i is at vertex v
at time s = Θ(log n/Φ2) is Θ( 1

n ).

Can’t use standard methods because walks are not fully
independent.
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Cover Time as a Function of Conductance

Analysis

Analysis of Walt

Let Ei be the event that pebble i visits (arbitrary) node v at
time s. Then the probability that v gets visited by any of the
pebbles is:

Pr

[⋃
i

Ei

]
≥

∑
i

Pr [Ei ]−
1

2

∑
i 6=j

Pr [Ei ∩ Ej ] (1)

(2)

We can use standard random walk theory to show that
Pr [Ei = 1] ≥ 1

2n

The challenge is to upper bound Pr [Ej ∩ Ei ] suitably.

We show that Pr [Ej ∩ Ei ] is at most 2
n2+n + 1

n4 for suitably
large s.
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Cover Time as a Function of Conductance

Analysis

Bound on Pr[Ei ∩ Ej ]

Fix the walk of pebble i , and and make the assumption that if
j and i arrive at the same time at the same node, j is the
third or higher priority pebble at that node.
View the random walks of i and j as a single random walk
over the tensor product graph G × G .

Cartesian product V (G )×V (G ) as vertex set, and an edge set
defined as follows: vertex (u, u′) ∈ V (G × G ) has an edge to
(v , v ′) ∈ V (G × G ) if and only if (u, v), (u′, v ′) ∈ E (G ).
Make edges directed, and attach weights to them such that
the walk on the directed graph D is isomorphic to the
movement of pebbles i , j in Walt on G .

Using directed Cheeger inequality [Chung 2005]:
Argue that second smallest eigenvalue of normalized Laplacian
of D is at least 1/Φ2.
Argue that walk converges in O(log n/Φ2) time to stationary
probability distribution of 2/(n2 + n).
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Cover Time for General Graphs

Can We Beat the Trivial Random Walk Bound?

Cover time of a standard random walk:

Upper bound of O(mn), where m is number of edges, by
considering an Eulerian walk over a spanning tree.

Tight bound of 4n3/27 + o(n) [Brightwell-Winkler; Feige].

Analysis using hitting time:

Consider a cobra walk starting from a node s.

What is the hitting time to an arbitrary node t?

Can try to follow the pebble nearest to t.
Leads to the notion of a biased random walk.

We show that hitting time is O(n11/4).

Invoke Matthews Theorem to obtain desired cover time
bound.
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Cover Time for General Graphs

Biased Random Walks

ε-Biased random walks introduced by
[Azar-Broder-Karlin-Linial-Phillips ’92]:

With probability 1− ε, make a random walk.

With probability ε, controller selects an arbitrary neighbor to
move to.

Theorem: (Azar et al) Consider a biased random walk, and
arbitrary vertex x . There is an ε-biased random walk for which the
stationary probability at x is at least

vol(S)

vol(S) +
∑

v 6=x(1− ε)∆(v ,x)−1 · δ(v)
,

where ∆(v , x) is the length of the shortest path from v to x .
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Cover Time for General Graphs

Inverse-Degree-Biased Walks

Inverse-degree-biased walk with target x :

If the walk is at x , then it moves to a uniformly random
neighbor.

If the walk is at v 6= x :

With probability 1− 1/δ(v), it moves to a uniformly random
neighbor.
With probability 1/δ(v), controller selects neighbor to move
the walk to.

Lemma: [Mitzenmacher-R-Roche 2016] Hitting time to x of cobra
walk is stochastically dominated by hitting time to x of
inverse-degree-biased walk with target x .
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Cover Time for General Graphs

Hitting Time of an Inverse-Degree-Biased Walk

Consider a shortest path from a given source to target x .

Bound the hitting time as the sum of the traversal times
along the edges of P.

Bound the traversal time from u to v using the return time of
another inverse-degree-biased walk.

Derive a variant of the Azar et al theorem in terms of a
revised notion of shortest path, using a beautiful theorem of
Metropolis et al.

Theorem: [Metropolis, Rosenbluth, Rosenbluth, Teller, and
Teller 1953] For every graph G and strictly positive probability
distribution π over the vertices of G , there exists a Markov
chain M whose stationary distribution is π.

Further calculations using the fact that P is a shortest path
yield the O(n11/4) bound.
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Conclusion and Open Problems

Cover time results for

Grids and trees: Tight.

Conductance-based analysis: In the same ball-park, but not
tight.

General graphs: Could be far from tight.

Many open problems remain:

O(n log n) time for general graphs?

Better bounds in terms of expansion, conductance, etc.?

Analyze other measures of interest.

Viewed as an information dissemination method, what is
message complexity?

Analysis for other classes of graphs.

Explore connections to SIS epidemics.
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