Coalescing-Branching (Cobra) Random Walks

Rajmohan Rajaraman ${ }^{1}$

Northeastern University, Boston, USA
27 June 2016 - ICTS, Bangalore, India
${ }^{1}$ Joint work with Chinmoy Dutta, Michael Mitzenmacher, Gopal Pandurangan, and Scott Roche

Introduction

There are many modes by which epidemics and information spread on networks:

- Simple random walks
- Rumor spreading mechanisms

■ Random walks with speed-up techniques
■ Parallel random walks
■ SIR and SIS epidemics models

Introducing Cobra Walks

■ Some node of a graph starts with a token/infection/piece of information

- Spreads information by sending it to k neighbors
- Any node infected at time t spreads to k neighbors

■ Process continues forever

Coalescing-branching (cobra) walks defined

- Static graph $G=(V, E)$ on n nodes.

■ Pick any $u^{\prime} \in V$ and place a token at u^{\prime}.
■ For each $u \in V$, if there is more than one token at node, all tokens at that node coalesce into one.
■ Each token then becomes k tokens (branching).
■ For each $u \in V$, each token at u independently chooses u.a.r some $v \in N(u)$ and moves to it.
■ For this talk, $k=2$.

LProblem Statement

Illustration of a cobra walk

LProblem Statement

What do we want to know about cobra walks?

1 How long does it take for a cobra walk to visit every node in a graph?

- For standard random walks $\Theta\left(n^{3}\right)$ [Feige 1995]

What do we want to know about cobra walks?

1 How long does it take for a cobra walk to visit every node in a graph?

- For standard random walks $\Theta\left(n^{3}\right)$ [Feige 1995]

2 What are the long term-dynamics of a cobra walk?
■ What percentage of nodes of a graph are "infected" as $t \rightarrow \infty$?

- Is there an analog to a stationary distribution or mixing time?

What do we want to know about cobra walks?

1 How long does it take for a cobra walk to visit every node in a graph?

- For standard random walks $\Theta\left(n^{3}\right)$ [Feige 1995]

2 What are the long term-dynamics of a cobra walk?
■ What percentage of nodes of a graph are "infected" as $t \rightarrow \infty$?

- Is there an analog to a stationary distribution or mixing time?

3 What are possible applications of cobra walks?

What do we want to know about cobra walks?

1 How long does it take for a cobra walk to visit every node in a graph?

■ For standard random walks $\Theta\left(n^{3}\right)$ [Feige 1995]
2 What are the long term-dynamics of a cobra walk?
■ What percentage of nodes of a graph are "infected" as $t \rightarrow \infty$?

- Is there an analog to a stationary distribution or mixing time?

3 What are possible applications of cobra walks?

Challenges in analyzing cobra walks

■ Size of active set is non-monotonic.
■ Lack of independence in number and distribution of pebbles
■ Dynamics of cobra walks governed by graph topology (e.g. number of common neighbors of nodes)...
■ ... and by current distribution of pebbles on the walks.

Cobra Walk as a Model for Epidemics

■ Cobra walks are a discrete-time version of the SIS (susceptible-infected-susceptible) epidemic mode with probability 0 of extinction:

■ Branching simulates probability of infecting neighbors
■ Coalescing simulates receiving infection from multiple neighbors
■ Recovery time (return to susceptible state) is one time step

- Extensive work in related contact processes [Harris 1974; Durrett 1980; Ganesh-Massoulié-Towsley 2005; Berger-Borgs-Chayes-Saberi 2005]
- Most work focuses on questions of extinction time and persistence of the epidemic [Durret 2010, Kessler 2007], [Draief and Ganesh 2011]
- Some models involve a mean-field approximation of some part of the epidemic. [Van Mieghem 2011].

Cobra Walks vs Rumor Spreading

■ Rumor spreading is well-studied [Chierichetti and Panconsesi 2010, Chierichetti et al 2011, Giakkoupis and Sauerwald 2012, Fountoulakis and Panagiotou 2010, and many others..]

- Fast coverage of any graph $O(n \log n)$ [Feige et al 1990]
- Set of nodes with rumor monotonically non-decreasing
- Message complexity can be high

Cobra Walks vs Parallel Random Walks

Parallel (independent) random walks [Alon et al 2008, Elsaesser and Sauerwald 2009, Efremenko and Reingold 2009]

- Can provide significant speed up for many classes of graphs (e.g. expanders)
- Cover time not necessarily equivalent to cobra walks

■ Independence of walks a powerful tool in proofs

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.
■ Lower bound: $\Omega(n \log n)$.

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

- Lower bound: $\Omega(n \log n)$.
- Trees: $O(n \log n)$ [Dutta-Pandurangan-R-Roche 2013].

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

- Lower bound: $\Omega(n \log n)$.
- Trees: $O(n \log n)$ [Dutta-Pandurangan-R-Roche 2013].
- d-Dimensional grid: $O\left(n^{\frac{1}{d}}\right)$ [Dutta-Pandurangan-R-Roche 2013].

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

- Lower bound: $\Omega(n \log n)$.
- Trees: $O(n \log n)$ [Dutta-Pandurangan-R-Roche 2013].
- d-Dimensional grid: $O\left(n^{\frac{1}{d}}\right)$ [Dutta-Pandurangan-R-Roche 2013].
- Conductance Φ and degree $d: O\left(\frac{d^{4} \log ^{2} n}{\phi^{2}}\right)$
[Mitzenmacher-R-Roche 2016].
- $O(\log n)$ bound for expanders [Cooper-Radzik-Rivera 2016]

Bounds on Cover Time of Cobra Walks

Let n be the number of nodes in the given graph.

- Lower bound: $\Omega(n \log n)$.
- Trees: $O(n \log n)$ [Dutta-Pandurangan-R-Roche 2013].
- d-Dimensional grid: $O\left(n^{\frac{1}{d}}\right)$ [Dutta-Pandurangan-R-Roche 2013].
- Conductance Φ and degree $d: O\left(\frac{d^{4} \log ^{2} n}{\Phi^{2}}\right)$ [Mitzenmacher-R-Roche 2016].
- $O(\log n)$ bound for expanders [Cooper-Radzik-Rivera 2016]
- Cover time for an arbitrary graph is $O\left(n^{11 / 4} \log n\right)$ [Mitzenmacher-R-Roche 2016].

Open Problems

■ Close the substantial gap between upper and lower bounds for general graphs.

- Tight bounds in terms of conductance and expansion of the graph.
- Analyze other measures of interest.
- Better bounds for special graph classes.
- Explore implications for real-world processes.

L Cover Time as a Function of Conductance

ᄂDefinitions

Conductance of a Graph

- A measure of how well the graph locally expands everywhere.

■ Define the volume of a set $S \subseteq V$ to be the sum of the degrees of the vertices in S.

- Let the conductance of a set $S \subseteq V$ of vertices be the ratio of the number of edges between S and $V \backslash S$ to the volume of S.
- Formally, define $\phi(S)=|\partial(S)| / \operatorname{vol}(S)$, where

$$
\partial(S)=\sum_{(u, v): u \in S, v \notin S} 1 \text { and } \operatorname{vol}(S)=\sum_{u \in S} d(u) .
$$

- Then the conductance Φ of the graph is the minimum conductance of a set whose volume is at most half the volume of V.
- Formally, Φ is $\min _{S: \text { vol }(S) \leq \operatorname{vol}(V) / 2} \phi(S)$.
- A constant-degree constant-conductance graph is referred to as an expander.

Challenges and Techniques

Challenges

- The number of active nodes is non-monotonic.
- Though the "pebbles" make independent branching moves, coalescing introduces dependencies.
Analysis plan:
- Introduce $W_{\text {alt }}$, a process that stochastically dominates cobra walks.
- Break the process into $O(\log n)$ epochs of length $O\left(\log n / \Phi^{2}\right)$.

■ In each epoch, show that any node v has a constant probability of being covered.

- This gives the desired high probability bound of $O\left(\log ^{2} n / \Phi^{2}\right)$ for cover time.

Description of $W_{\text {alt }}$.

- There are δn pebbles distributed arbitrarily around the graph.

■ No more branching or coalescing occurs.

- Pebbles are arbitrarily labeled using a total order.
- First two pebbles at v at time t continue to move independently.
■ Third and higher-ranked pebbles at v at time t chose one of the destinations of the first two pebbles independently with probability $1 / 2$.

Coalescing-Branching (Cobra) Random Walks
L Cover Time as a Function of Conductance
-Analysis
Illustration of $W_{\text {alt }}$

Coalescing-Branching (Cobra) Random Walks
L Cover Time as a Function of Conductance
-Analysis
Illustration of $W_{\text {alt }}$

Coalescing-Branching (Cobra) Random Walks
L Cover Time as a Function of Conductance
-Analysis
Illustration of $W_{\text {alt }}$

Coalescing-Branching (Cobra) Random Walks
L Cover Time as a Function of Conductance
-Analysis
Illustration of $W_{\text {alt }}$

$W_{\text {alt }}$ covers G in $O\left(\log ^{2} n / \Phi^{2}\right)$ rounds

Main idea:
■ Show that each node of G will be covered by at least one pebble in $O\left(\log n / \Phi^{2}\right)$ steps with constant probability,

- Repeat $O(\log n)$ times to get a high probability bound on every node.
Therefore,
■ Need to show that probability that any pebble i is at vertex v at time $s=\Theta\left(\log n / \Phi^{2}\right)$ is $\Theta\left(\frac{1}{n}\right)$.
- Can't use standard methods because walks are not fully independent.

Analysis of $W_{\text {alt }}$

■ Let E_{i} be the event that pebble i visits (arbitrary) node v at time s. Then the probability that v gets visited by any of the pebbles is:

$$
\begin{equation*}
\operatorname{Pr}\left[\bigcup_{i} E_{i}\right] \geq \sum_{i} \operatorname{Pr}\left[E_{i}\right]-\frac{1}{2} \sum_{i \neq j} \operatorname{Pr}\left[E_{i} \cap E_{j}\right] \tag{1}
\end{equation*}
$$

■ We can use standard random walk theory to show that $\operatorname{Pr}\left[E_{i}=1\right] \geq \frac{1}{2 n}$
■ The challenge is to upper bound $\operatorname{Pr}\left[E_{j} \cap E_{i}\right]$ suitably.

- We show that $\operatorname{Pr}\left[E_{j} \cap E_{i}\right]$ is at most $\frac{2}{n^{2}+n}+\frac{1}{n^{4}}$ for suitably large s.

L Cover Time as a Function of Conductance

Bound on $\operatorname{Pr}\left[E_{i} \cap E_{j}\right]$

- Fix the walk of pebble i, and and make the assumption that if j and i arrive at the same time at the same node, j is the third or higher priority pebble at that node.
■ View the random walks of i and j as a single random walk over the tensor product graph $G \times G$.
- Cartesian product $V(G) \times V(G)$ as vertex set, and an edge set defined as follows: vertex $\left(u, u^{\prime}\right) \in V(G \times G)$ has an edge to $\left(v, v^{\prime}\right) \in V(G \times G)$ if and only if $(u, v),\left(u^{\prime}, v^{\prime}\right) \in E(G)$.
■ Make edges directed, and attach weights to them such that the walk on the directed graph \mathcal{D} is isomorphic to the movement of pebbles i, j in $W_{a l t}$ on G.
■ Using directed Cheeger inequality [Chung 2005]:
- Argue that second smallest eigenvalue of normalized Laplacian of \mathcal{D} is at least $1 / \Phi^{2}$.
- Argue that walk converges in $O\left(\log n / \Phi^{2}\right)$ time to stationary probability distribution of $2 /\left(n^{2}+n\right)$.

Can We Beat the Trivial Random Walk Bound?

Cover time of a standard random walk:

- Upper bound of $O(m n)$, where m is number of edges, by considering an Eulerian walk over a spanning tree.
- Tight bound of $4 n^{3} / 27+o(n)$ [Brightwell-Winkler; Feige].

Analysis using hitting time:

- Consider a cobra walk starting from a node s.

■ What is the hitting time to an arbitrary node t ?

- Can try to follow the pebble nearest to t.
- Leads to the notion of a biased random walk.
- We show that hitting time is $O\left(n^{11 / 4}\right)$.

■ Invoke Matthews Theorem to obtain desired cover time bound.

Biased Random Walks

ε-Biased random walks introduced by
[Azar-Broder-Karlin-Linial-Phillips '92]:
■ With probability $1-\varepsilon$, make a random walk.
■ With probability ε, controller selects an arbitrary neighbor to move to.

Theorem: (Azar et al) Consider a biased random walk, and arbitrary vertex x. There is an ε-biased random walk for which the stationary probability at x is at least

$$
\frac{\operatorname{vol}(S)}{\operatorname{vol}(S)+\sum_{v \neq x}(1-\varepsilon)^{\Delta(v, x)-1} \cdot \delta(v)},
$$

where $\Delta(v, x)$ is the length of the shortest path from v to x.

Inverse-Degree-Biased Walks

Inverse-degree-biased walk with target x :

- If the walk is at x, then it moves to a uniformly random neighbor.
- If the walk is at $v \neq x$:
- With probability $1-1 / \delta(v)$, it moves to a uniformly random neighbor.
- With probability $1 / \delta(v)$, controller selects neighbor to move the walk to.
Lemma: [Mitzenmacher-R-Roche 2016] Hitting time to x of cobra walk is stochastically dominated by hitting time to x of inverse-degree-biased walk with target x.

Hitting Time of an Inverse-Degree-Biased Walk

■ Consider a shortest path from a given source to target x.

- Bound the hitting time as the sum of the traversal times along the edges of P.
- Bound the traversal time from u to v using the return time of another inverse-degree-biased walk.
■ Derive a variant of the Azar et al theorem in terms of a revised notion of shortest path, using a beautiful theorem of Metropolis et al.
- Theorem: [Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953] For every graph G and strictly positive probability distribution π over the vertices of G, there exists a Markov chain M whose stationary distribution is π.
- Further calculations using the fact that P is a shortest path yield the $O\left(n^{11 / 4}\right)$ bound.

Cover time results for
■ Grids and trees: Tight.
■ Conductance-based analysis: In the same ball-park, but not tight.
■ General graphs: Could be far from tight.
Many open problems remain:

- $O(n \log n)$ time for general graphs?

■ Better bounds in terms of expansion, conductance, etc.?

- Analyze other measures of interest.
- Viewed as an information dissemination method, what is message complexity?
- Analysis for other classes of graphs.

■ Explore connections to SIS epidemics.

