Emergent geometry from RG

Gautam Mandal

Tata Institute of Fundamental Research

ICTS Discussion Meeting, ICTS, Bangalore September 26, 2012

(with Daniel Elander and Hiroshi Isono)

References

I. Heemskerk and J. Polchinski (1010.1264) T. Faulkner, H. Liu and M. Rangamani (1010.4036) Daniel Elander, GM, Hiroshi Isono (1109.3366,12xx.yyyy) Sung-Sik Lee (0912.5223,1011.1474, 1204.1780)

Introduction ●oooooooo	Computation	Conclusions o
Large N=Classical		
Large N=Classical		

- It has long been known that large *N* field theories are classical; e.g. correlators of (gauge)-invariant observables is described by a functional integral which has a classical limit, and at $N = \infty$, are described by a classical saddle point.
- E.g., in the Gross-Neveu model

$$\begin{split} &S_{\psi} = \int d^2 x [\bar{\psi} \, \partial \psi(x) - g/(2N)(\bar{\psi}(x)\psi(x))^2] \\ &= \int d^2 x [\bar{\psi} \, \partial \psi(x) + \sigma \bar{\psi}\psi(x) + N/(2g)\sigma^2] \\ &= S_{\sigma} = \textit{N}[\textit{Trln}(\partial + \sigma) + \int d^2 x \sigma^2/(2g)] \end{split}$$

Correlators of the fermion bilinear are

$$\langle \bar{\psi}\psi(\mathbf{x})....\rangle = \sigma_{cl}(\mathbf{x})...+O(1/\sqrt{N})$$

where $\sigma_{cl}(x)$ is a solution of S_{σ} . At $N = \infty$, the theory S_{σ} is classical, but it is non-local.

Introduction	Computation	Conclusion
oeooooooo	0000000000	o
Large N=Classical		

large *N*= classical geometry

• Imagine computing correlators of $T_{\mu\nu}$:

$$Z[h_{\mu
u}] = \int D[...] \exp[-S + \int h_{\mu
u} T_{\mu
u}]$$

• In a GN-like example, in a background metric $\bar{g}_{\mu
u}$, schematically

$$Z[h] = \int D\sigma \exp[N(\operatorname{Tr}\ln(\bar{D} + \sigma + h_{\mu\nu}\gamma^{\mu}\bar{D}^{\nu}) + \int \sigma^{2}/(2g))]$$

At large *N*, the σ -functional integral is evaluated at a saddle point: $\sigma = \sigma_{cl}[h] + O(1/\sqrt{N})$.

Introduction	Computation	Conclusions
0000000		

• The conservation law $\bar{D}^{\mu}T_{\mu\nu} = 0$ implies a gauge symmetry of $h_{\mu\nu}$, that of linearized general covariance:

$$\delta h_{\mu\nu} = \bar{D}_{\mu}\xi_{\nu} + \bar{D}_{\nu}\xi_{\mu}$$

$$c\int Rrac{1}{D^2}R$$

Lessons from AdS/CFT

Lesson from the example of AdS/CFT

- For certain large *N* theories, the classical geometry (=metric+ other fields) IS local, albeit in higher dimensions.
- radial coordinate r ∼ cut-off scale ∧ of FT
- radial derivative $d\phi/dr \leftrightarrow \beta(g) = dg/d\Lambda$
- A very precise correspondence beteen the radial hamiltonian evolution of the path-integral, and Wilsonian RG evolution has been obtained. (see picture).
- E.g. for double trace flows $\int gO^2$, this technology gives

$$\dot{\delta g} = \pm 2\nu \delta g + \delta g^2$$

which gives the correct beta-function expected near the IR (upper sign) and UV (lower sign) fixed points of a Wilson-Fisher system.

Lessons from AdS/CFT

Wilson locality = locality in r

- As Wilson showed us, the physics at any scale can be understood in terms of an effective hamiltonian at that scale. the new vertices that are generated in going from Λ to Λ - dΛ, have couplings g + δg, where dg/dΛ is given by a function β(g) where g is the coupling at THAT scale (Λ).
- There is a direct AdS/CFT map of the above statements: the bulk theory has a radial Hamiltonian evolution (in the ADM sense), and the theory must be local in *r*.

Holography from ANY large N field theory?

- **The question**: Can we reformulate a garden variety large N field theory, in terms of an equivalent higher dimensional theory, with at least locality in *r*?
- Answer: Yes.

- The spacetime theory is in one higher dimension.
- It is a 2-derivative theory in terms of radial derivatives.
- The higher dimensional theory has non-trivial metric; the radial component of the metric is related to field theory beta-functions.
- We do not require criticality or near-criticality for the proof of the above statements.
- The d + 1-dimensional theory is generically non-local in the original d dimensions and the metric is not that of AdS.
- At a fixed point, the radial component of the metric coincides with that of AdS (with the conventional identification between radius and scale). The m²-Δ relation also works out.
- (Work in Progress): Near a fixed point, the theory appears to be local in the *d* dimensions as well. The overall metric g_{MN} coincides with AdS.

Introduction	Computation 00000000000	Conclusions o
Plan		
Plan		

- An example
- General large *N* field theory: emergence of higher dimensional spacetime
- Emergence of AdS near CFT

Introduction 000000000	Computation ●○○○○○○○○○	Conclusions o
Example		
Example		

Consider a matrix field theory in d = 3 (cut-off Λ)

$$Z(\Lambda) = \int D\Phi \exp[-S],$$

$$S = N \int d^d x [Tr \partial_\mu \Phi^2 + g_2 Tr \Phi^2 + g_{2,2}/(2N)(Tr \Phi^2)^2 + g_6 Tr \Phi^6]$$

where we have tuned Φ^4 to zero for simplicity.

We will get rid of the double trace coupling by introducing an additional, Gaussian auxiliary variable:

$$\begin{split} S &= S_{ST} + S_{source} + S_{UV}, \\ S_{ST} &= N \int d^d x [\text{Tr} \partial_\mu \Phi^2 + g_2 \text{Tr} \Phi^2 + g_6 \text{Tr} \Phi^6] \\ S_{source} &= N \int \sigma_0 (\text{Tr} \Phi^2), \ S_{UV} &= -N \int \sigma_0^2 / (2g_{2,2}) \end{split}$$

We now apply Wilsonian RG procedure to derive an effective theory at a lower cutoff $\Lambda' = \Lambda - d\Lambda$.

One-step RG computation		
Example		
Introduction 000000000	Computation o●oooooooooo	Conclusions o

- We split $\Phi \to {\Phi, \hat{\Phi}}$ where the 'fast' variables $\hat{\Phi}$ have momenta in the shell ${\Lambda', \Lambda}$.
- We integrete out the Φ̂. Additional vertices are induced. After we do the usual rescaling of momenta, the original couplings become

$$g_2', g_6', g_{2,2}' = \delta g_{2,2} = -b_{2,2}g_6 \Lambda^{d-3} d\Lambda$$

• The last term arises because of the following diagram

Introduction	Computation	Conclusions
	0000000000	

Example

New auxiliary variables

Like for the original bare couplings, we again get rid of the double trace couplings, by introducing a new auxiliary variable $\tilde{\sigma}_0$:

$$S = N \int d^d x [Tr \partial_\mu \Phi^2 + g'_2 Tr \Phi^2 + g'_6 Tr \Phi^6 - N\sigma_0^2/(2g_{2,2})]$$

+
$$\int d^d x [N^2 A_0 \frac{\tilde{\sigma}_0^2}{d\Lambda} + N(\sigma_0 + \tilde{\sigma}_0)(Tr \Phi^2)], A_0 \equiv \Lambda^{3-d}/(b_{2,2}g_6)$$

The blue term can be made to look more natural, by making a field redefinition

$$\{\sigma_0, \tilde{\sigma}_0\} \rightarrow \{\sigma_0, \sigma_1 \equiv \sigma_0 + \tilde{\sigma}_0\},\$$

to get

$$A_0(\sigma_1 - \sigma_0)^2/d\Lambda$$

As we continue with the RG steps, introducing the variables $\sigma_2, \sigma_3, ...$ for every new Wilson slice, we get

$$A_0(\sigma_1 - \sigma_0)^2/d\Lambda + A_1(\sigma_2 - \sigma_1)^2/d\Lambda + ... = \int d\Lambda \ A(\Lambda) \ (\partial_\Lambda \sigma)^2$$

Introduction 00000000	Computation ccceococococo	Conclusions O
Example		
Other vertices		

The structure of A is slightly more complicated, actually, because of new vertices which are generated,e.g.

Triple (and higher) traces involve $(d\Lambda)^2$ (and higher powers); since we are working here with infinitesimal $d\Lambda$ in the one-step RG, we ignore these vertices:

Collecting all the terms, and ignoring derivatives in the x^{μ} directions, we get

$$\begin{split} Z(\Lambda_0) &= \int D\sigma(\Lambda) Z[\Lambda', \sigma(\Lambda')] \exp[-S_{bulk}(\sigma) - S_{UV}(\sigma(\Lambda_0))] \\ S_{bulk} &= N^2 \int_{\Lambda'}^{\Lambda_0} d\Lambda d^d x [A(\Lambda, \sigma) \ (\partial_\Lambda \sigma)^2 + V(\sigma)] \\ Z[\Lambda', \sigma(\Lambda')] &= D_{\Lambda'} \Phi \exp[-S_{ST}(\Phi, \Lambda') + \int d^d x \sigma(\Lambda') \operatorname{Tr} \phi^2], \\ A &\propto \Lambda^{3-d} \end{split}$$

Introduction ooooooooo	Computation 000000000000000000000000000000000000	Conclusions o
Example		
Collecting all		

Rewriting $\Lambda = r$, and making the couplings and fields dimensionless $\sigma(\Lambda) \rightarrow \phi(r)$,

$$\begin{split} Z(\Lambda_0) &= \int D\phi(r) Z[r', \phi(r')] \exp[-S_{bulk}(\phi) - S_{UV}(\phi(r_0))] \\ S_{bulk} &= N^2 \int_{r'}^{r_0} dr d^d x [A(r, \phi) \ (\partial_r \phi)^2 + V(\phi)] \\ Z[\Lambda' &= r', \phi(r')] = \int D_{\Lambda' = r'} \Phi \exp[-S_{ST}(\Phi, r') + \int \phi(r') Tr \Phi^2], \\ A(r) &= r^{d+1} \ \bar{f}(g_2(r), g_6(r), \phi(r)), \\ S_{ST}(\Phi, r') &= \int d^d x [Tr(\partial_\mu \Phi)^2 + g_2(r') \Phi^2 + g_6(r') \Phi^6] \end{split}$$

00000000 000000 000000 000000 000000 0000	
Introduction Computation Conclusions	usions

$$S_{ST}[\Phi_0, \lambda_0; \Lambda_0] = \int d^d x \ N \operatorname{Tr} \left[-\frac{1}{2} \partial_\mu \Phi_0 \partial^\mu \Phi_0 + \sum_a \Lambda_0^{d-a[\Phi]} \lambda_{0a} \Phi_0^a \right]$$

$$\begin{split} \mathcal{S}[\Phi_0,g_0;\Lambda_0] &= \mathcal{S}_{\mathsf{ST}}[\Phi_0,g_0;\Lambda_0] + \int d^d x \left[\sum_a \Lambda_0^{d-a[\Phi]} g_a \mathrm{Tr} \Phi_0^a \right] \\ &+ \sum_{a,b} \Lambda_0^{d-a[\Phi]-b[\Phi]} \frac{g_{a,b}}{2} \mathrm{Tr} \Phi_0^a \mathrm{Tr} \Phi_0^b \right] \end{split}$$

$$egin{aligned} Z &= \int \mathcal{D}\sigma_0 \mathcal{D}\Phi_0 \exp \Big[- \mathcal{S}_{ST}[\Phi_0,g_0;\Lambda_0] - \int d^d x \sigma_{0a} \mathrm{Tr} \Phi_0^a \Big] \Psi_{\mathrm{UV}}(\sigma_0), \ \Psi_{\mathrm{UV}}[\sigma_0] &= \exp \Big[\int d^d x \left(\Lambda_0^{d-[\sigma_a]-[\sigma_b]} rac{g^{a,b}\sigma_{0a}\sigma_{0b}}{2} - \Lambda_0^{d-[\sigma_b]} g_a g^{a,b}\sigma_{0b}
ight. \ &+ \Lambda_0^d rac{g_a g^{a,b} g_b}{2} \Big) \Big] \end{aligned}$$

$$Z(\Lambda_0) = \int D\phi_a(r) Z[r', \phi(r')] \exp[-S_{bulk}(\phi_a) - S_{UV}(\phi_a(r_0))]$$

$$S_{bulk} = N^2 \int_{r'}^{r_0} dr d^d x \left[A^{ab}(r, g_a(r), \phi_a(r)) \partial_r \phi_a \partial_r \phi_b + V(\phi_a)\right]$$

$$Z[r', \phi(r')] = \int D_{\Lambda'=r'} \Phi \exp[-S_{ST}(\Phi, r') + \int \phi_a(r') Tr \Phi^a],$$

$$A^{ab}(r) = r^{d+1} \overline{t}^{ab}(g_a(r), \phi_a(r)), \ S_{ST} = \int_x [Tr(\partial_\mu \Phi)^2 + g_a(r') Tr \Phi^a]$$

where \bar{f}^{ab} is dimensionless. All *x*-derivatives are ignored at the moment; we will discuss them later.

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

A spacetime theory has emerged, whose radial slice *r* ∈ {*r'*, *r*₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in *d* + 1 dimensions.

Introduction 00000000	Computation ○○○○○○○○○○○○○	Conclusions o
General case		
Back to Claims		

A spacetime theory has emerged, whose radial slice *r* ∈ {*r'*, *r*₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in *d* + 1 dimensions. √

Introduction 00000000	Computation ○○○○○○○●●●●●	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives.

Introduction 00000000	Computation ○○○○○○○●●●●●	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. ✓
- It is a 2-derivative theory in terms of radial derivatives.

Introduction ooooooooo	Computation ○○○○○○○●○○○	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. ✓
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a d + 1 dimensional spacetime, with target space metric \bar{f}^{ab} . The radial component of the metric is related to field theory beta-functions.

Introduction ooooooooo	Computation ○○○○○○○●○○○	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. ✓
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. ✓
- It is a 2-derivative theory in terms of radial derivatives. \checkmark
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives. \checkmark
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.
- The d + 1-dimensional theory is generically non-local in the original d dimensions and the metric is not that of AdS.

Back to Claims		
General case		
Introduction 00000000	Computation ○○○○○○○●●○○○	Conclusions o

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.
- The *d* + 1-dimensional theory is generically non-local in the original *d* dimensions and the metric is not that of AdS. ✓

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.
- The *d* + 1-dimensional theory is generically non-local in the original *d* dimensions and the metric is not that of AdS. ✓
- In the neighbourhood of a fixed point, the g_{rr} component of the metric coincides with that of AdS (with the conventional identification between radius and scale).

Introduction 00000000	Computation	Conclusions o
General case		
Back to Claims		

- A spacetime theory has emerged, whose radial slice r ∈ {r', r₀} captures all the quantum fluctuations in the field theory between the momentum scales Λ ∈ {Λ', Λ₀}. It is in d + 1 dimensions. √
- It is a 2-derivative theory in terms of radial derivatives.
- The spacetime theory has a non-trivial metric; it has the general form of a nonlinear sigma-model in a *d* + 1 dimensional spacetime, with target space metric *f*^{ab}. The radial component of the metric is related to field theory beta-functions.√
- We do not require criticality or near-criticality for the proof of the above statements.
- The *d* + 1-dimensional theory is generically non-local in the original *d* dimensions and the metric is not that of AdS. ✓
- In the neighbourhood of a fixed point, the g_{rr} component of the metric coincides with that of AdS (with the conventional identification between radius and scale). → ...

Recall the emergent bulk action

$$S_{bulk} = N^2 \int_{r'}^{r_0} dr d^d x \left[r^{d+1} \, \bar{f}^{ab}(r, g_a(r), \phi_a(r)) \, \partial_r \phi_a \partial_r \phi_b + V(\phi_a) \right]$$

• As it stands, the term with the radial derivatives defines a non-linear sigma model, i.e. a map from a d + 1 dimensional spacetime to a target space with metric \bar{f}^{ab} .

Recall the emergent bulk action

$$S_{bulk} = N^2 \int_{r'}^{r_0} dr d^d x \left[r^{d+1} \, \bar{f}^{ab}(r, g_a(r), \phi_a(r)) \, \partial_r \phi_a \partial_r \phi_b + V(\phi_a) \right]$$

- As it stands, the term with the radial derivatives defines a non-linear sigma model, i.e. a map from a d + 1 dimensional spacetime to a target space with metric \bar{f}^{ab} .
- However, note the N^2 in front; this means that at large N, the NLSM has a classical saddle point: $\phi_a(r, x) = \overline{\phi}_a(r, x) + \frac{1}{N}\varphi_a(r, x)$
- E.g. if the ϕ_a represents gravitons, the choice of the saddle point represents the choice of a background spacetime: $h_{\mu\nu}(r, x) = \overline{h}_{\mu\nu}(r, x) + \sqrt{\kappa} \delta h_{\mu\nu}(r, x)$

Conformality and AdS		
General case		
Introduction 00000000	Computation ○○○○○○○○○●○	Conclusions o

• At large N, we get

$$\begin{split} S_{bulk} &= N^2 S_{cl}[\overline{\phi}_a] + \int_{r'}^{r_0} dr d^d x \left[r^{d+1} \, \overline{f}^{ab}(r, g_a(r), \overline{\phi}_a(r, x)) \, \partial_r \varphi_a \partial_r \varphi_b \right. \\ &+ r^{d-1} m^{ab}(r, g_a(r), \overline{\phi}_a(r, x)) \varphi_a \varphi_b + O(1/N)] \end{split}$$

- As we approach conformal point, we have the fixed point values $g_a(r) \to g_a^*$. Also we must have $\overline{\phi}_a(r) \to \overline{\phi}_a$ (spacetime-independent); so that $S_{source} = N \int d^d x \overline{\phi}_a(x) \operatorname{Tr} \Phi^a$ is scale-invariant.
- With this, we have

$$S_{bulk} = \int_{r'}^{r_0} dr d^d x, r^{d+1} \partial_r \varphi_a \partial_r \varphi_a + r^{d-1} m^{ab} \varphi_a \varphi_b O(1/N)]$$

where we have set the constant $\bar{f}^{ab} = \delta^{ab}$ by appropriate diagonalization and rescaling.

• Note that for AdS, $\sqrt{g} = r^{d-1}$, $\sqrt{g}g^{rr} = r^{d+1}$. Hence, at the conformal point, the AdS structure emerges. [Note that we have ignored *x*-derivatives so far.]

Introduction 00000000	Computation ○○○○○○○○○●	Conclusions O
General case		
x-derivatives		

• In our little example considered before, let us revisit the diagram contributing to the φ^2 term

- The loop integral $\int_{k=0}^{\Lambda}$ schematically evaluates to $\Lambda^2 f(k^2/L^2)$, $f(k^2/L^2) = 1 + k^2/L^2 + k^4/\Lambda^4 + ...$
- In the interval $\int_{k=\Lambda-d\Lambda}^{\Lambda}$, we should get $\Lambda d\Lambda \tilde{f}(k^2/L^2)$, $\tilde{f}(k^2/L^2) = 1 + k^2/L^2 + k^4/\Lambda^4 + ...$
- Thus, we get

$$r^{d-1}[r^2(\partial_r \varphi_a)^2 + m^{ab} \varphi_a \varphi_b + k^2/r^2 \varphi(k) \varphi(-k)]$$

 There is a conceptual issue regarding Wilson-Polchinski RG (smooth vs hard cut-off).

Conclusions and open issues

- Need to complete the *x*-derivatives.
- Vasiliev
- New geometries?
- Does the higher dimensional viewpoint help technically?
- General covariance.

 Compare with other approaches: Entanglement-DMRG, Matrix models, ...