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Large N=Classical

Large N=Classical

It has long been known that large N field theories are classical;
e.g. correlators of (gauge)-invariant observables is described by
a functional integral which has a classical limit, and at N = ∞,
are described by a classical saddle point.
E.g., in the Gross-Neveu model

Sψ =

∫

d2x [ψ̄ /∂ψ(x)− g/(2N)(ψ̄(x)ψ(x))2]

=

∫

d2x [ψ̄ /∂ψ(x) + σψ̄ψ(x) + N/(2g)σ2]

= Sσ = N[Trln( /∂ + σ) +

∫

d2xσ2/(2g)]

Correlators of the fermion bilinear are

〈ψ̄ψ(x).....〉 = σcl(x)...+ O(1/
√

N)

where σcl(x) is a solution of Sσ. At N = ∞, the theory Sσ is
classical, but it is non-local.
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Large N=Classical

large N= classical geometry

Imagine computing correlators of Tµν :

Z [hµν ] =
∫

D[...] exp[−S +

∫

hµνTµν ]

In a GN-like example, in a background metric ḡµν , schematically

Z [h] =
∫

Dσ exp[N(Tr ln( /̄D + σ + hµνγµD̄ν) +

∫

σ2/(2g))]

At large N, the σ-functional integral is evaluated at a saddle
point: σ = σcl [h] + O(1/

√
N).
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Large N=Classical

The conservation law D̄µTµν = 0 implies a gauge
symmetry of hµν , that of linearized general covariance:

δhµν = D̄µξν + D̄νξµ

The theory Z [h] possibly defines a generally covariant
theory, with metric g = ḡ + h, except that the theory is
non-local. An example of a typical non-local, covariant
term in ln Z [h], for a 2D CFT, is

c
∫

R
1

D2 R
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Lessons from AdS/CFT

Lesson from the example of AdS/CFT

For certain large N theories, the classical geometry
(=metric+ other fields) IS local, albeit in higher dimensions.

radial coordinate r ∼ cut-off scale Λ of FT

radial derivative dφ/dr ↔ β(g) = dg/dΛ

A very precise correspondence beteen the radial
hamiltonian evolution of the path-integral, and Wilsonian
RG evolution has been obtained. (see picture).

E.g. for double trace flows
∫

gO2, this technology gives

˙δg = ±2νδg + δg2

which gives the correct beta-function expected near the IR
(upper sign) and UV (lower sign) fixed points of a
Wilson-Fisher system.
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Lessons from AdS/CFT

Wilson locality = locality in r

As Wilson showed us, the physics at any scale can be
understood in terms of an effective hamiltonian at that
scale. the new vertices that are generated in going from Λ
to Λ− dΛ, have couplings g + δg, where dg/dΛ is given by
a function β(g) where g is the coupling at THAT scale (Λ).

There is a direct AdS/CFT map of the above statements:
the bulk theory has a radial Hamiltonian evolution (in the
ADM sense), and the theory must be local in r .
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Holography from ANY large N field theory?

The question : Can we reformulate a garden variety large
N field theory, in terms of an equivalent higher dimensional
theory, with at least locality in r?

Answer : Yes.
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The spacetime theory is in one higher dimension.
It is a 2-derivative theory in terms of radial derivatives.
The higher dimensional theory has non-trivial metric; the
radial component of the metric is related to field theory
beta-functions.
We do not require criticality or near-criticality for the proof
of the above statements.
The d + 1-dimensional theory is generically non-local in
the original d dimensions and the metric is not that of AdS.
At a fixed point, the radial component of the metric
coincides with that of AdS (with the conventional
identification between radius and scale). The m2-∆
relation also works out.
(Work in Progress): Near a fixed point, the theory appears
to be local in the d dimensions as well. The overall metric
gMN coincides with AdS.



Introduction Computation Conclusions

Plan

Plan

An example

General large N field theory: emergence of higher
dimensional spacetime

Emergence of AdS near CFT
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Example

Consider a matrix field theory in d = 3 (cut-off Λ)

Z (Λ) =

∫

DΦexp[−S],

S = N
∫

dd x [Tr∂µΦ2 + g2TrΦ2 + g2,2/(2N)(TrΦ2)2 + g6TrΦ6]

where we have tuned Φ4 to zero for simplicity.
We will get rid of the double trace coupling by introducing an
additional, Gaussian auxiliary variable:

S = SST + Ssource + SUV ,

SST = N
∫

ddx [Tr∂µΦ2 + g2TrΦ2 + g6TrΦ6]

Ssource = N
∫

σ0(TrΦ2), SUV = −N
∫

σ2
0/(2g2,2)

We now apply Wilsonian RG procedure to derive an effective theory
at a lower cutoff Λ′ = Λ− dΛ.
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Example

One-step RG computation

We split Φ → {Φ, Φ̂} where the ‘fast’ variables Φ̂ have
momenta in the shell {Λ′,Λ}.

We integrete out the Φ̂. Additional vertices are induced.
After we do the usual rescaling of momenta, the original
couplings become

g′

2, g
′

6, g
′

2,2 = δg2,2 = −b2,2g6Λ
d−3dΛ

The last term arises because of the following diagram
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Example

New auxiliary variables

Like for the original bare couplings, we again get rid of the double
trace couplings, by introducing a new auxiliary variable σ̃0:

S = N
∫

dd x [Tr∂µΦ2 + g′

2TrΦ2 + g′

6TrΦ6 − Nσ2
0/(2g2,2)]

+

∫

ddx [N2A0
σ̃2

0

dΛ
+ N(σ0 + σ̃0)(TrΦ2)], A0 ≡ Λ3−d/(b2,2g6)

The blue term can be made to look more natural, by making a field
redefinition

{σ0, σ̃0} → {σ0, σ1 ≡ σ0 + σ̃0},
to get

A0(σ1 − σ0)
2/dΛ

As we continue with the RG steps, introducing the variables σ2, σ3, ..
for every new Wilson slice, we get

A0(σ1 − σ0)
2/dΛ + A1(σ2 − σ1)

2/dΛ + ... =

∫

dΛ A(Λ) (∂Λσ)2
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Example

Other vertices

The structure of A is slightly more complicated, actually,
because of new vertices which are generated,e.g.

σn(TrΦ2)2 σnTrΦ2 σn

Triple (and higher) traces involve (dΛ)2 (and higher powers);
since we are working here with infinitesimal dΛ in the one-step
RG, we ignore these vertices:
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Example

Collecting all...

Collecting all the terms, and ignoring derivatives in the xµ

directions, we get

Z (Λ0) =

∫

Dσ(Λ)Z [Λ′, σ(Λ′)] exp[−Sbulk (σ)− SUV (σ(Λ0))]

Sbulk = N2
∫ Λ0

Λ′

dΛddx [A(Λ, σ) (∂Λσ)2 + V (σ)]

Z [Λ′, σ(Λ′)] = DΛ′Φexp[−SST (Φ,Λ
′) +

∫

ddxσ(Λ′)Trφ2],

A ∝ Λ3−d
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Example

Collecting all...

Rewriting Λ = r , and making the couplings and fields
dimensionless σ(Λ) → φ(r),

Z (Λ0) =

∫

Dφ(r)Z [r ′, φ(r ′)] exp[−Sbulk (φ)− SUV (φ(r0))]

Sbulk = N2
∫ r0

r ′
drddx [A(r , φ) (∂rφ)

2 + V (φ)]

Z [Λ′ = r ′, φ(r ′)] =
∫

DΛ′=r ′Φexp[−SST (Φ, r
′) +

∫

φ(r ′)TrΦ2],

A(r) = rd+1 f̄ (g2(r), g6(r), φ(r)),

SST (Φ, r
′) =

∫

ddx [Tr(∂µΦ)2 + g2(r
′)Φ2 + g6(r

′)Φ6]
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General case

General construction

SST [Φ0, λ0; Λ0] =

∫

ddx N Tr

[

−1
2
∂µΦ0∂

µΦ0 +
∑

a

Λ
d−a[Φ]
0 λ0aΦ

a
0

]

S[Φ0,g0; Λ0] = SST [Φ0,g0; Λ0] +

∫

ddx

[

∑

a

Λ
d−a[Φ]
0 gaTrΦa

0

+
∑

a,b

Λ
d−a[Φ]−b[Φ]
0

ga,b

2
TrΦa

0TrΦb
0





Z =

∫

Dσ0DΦ0 exp
[

− SST [Φ0,g0; Λ0]−
∫

ddxσ0aTrΦa
0

]

ΨUV(σ0),

ΨUV[σ0] = exp
[

∫

ddx
(

Λ
d−[σa]−[σb]
0

ga,bσ0aσ0b

2
− Λ

d−[σb]
0 gaga,bσ0b

+ Λd
0

gaga,bgb

2

)]
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General case

Z (Λ0) =

∫

Dφa(r)Z [r ′, φ(r ′)] exp[−Sbulk (φa)− SUV (φa(r0))]

Sbulk = N2
∫ r0

r ′
drddx [Aab(r , ga(r), φa(r)) ∂rφa∂rφb + V (φa)]

Z [r ′, φ(r ′)] =
∫

DΛ′=r ′Φexp[−SST (Φ, r
′) +

∫

φa(r ′)TrΦa],

Aab(r) = rd+1 f̄ ab(ga(r), φa(r)), SST =

∫

x
[Tr(∂µΦ)2 + ga(r ′)TrΦa]

where f̄ ab is dimensionless. All x-derivatives are ignored at the
moment; we will discuss them later.
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General case

Back to Claims

A spacetime theory has emerged, whose radial slice r ∈ {r ′, r0}
captures all the quantum fluctuations in the field theory between
the momentum scales Λ ∈ {Λ′,Λ0}. It is in d + 1 dimensions.
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original d dimensions and the metric is not that of AdS. X

In the neighbourhood of a fixed point, the grr component of the
metric coincides with that of AdS (with the conventional
identification between radius and scale). → ...
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General case

Conformality and AdS

Recall the emergent bulk action

Sbulk = N2
∫ r0

r ′
drddx [rd+1 f̄ ab(r , ga(r), φa(r)) ∂rφa∂rφb+V (φa)]

As it stands, the term with the radial derivatives defines a
non-linear sigma model, i.e. a map from a d + 1
dimensional spacetime to a target space with metric f̄ ab.
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General case

Conformality and AdS

Recall the emergent bulk action

Sbulk = N2
∫ r0

r ′
drddx [rd+1 f̄ ab(r , ga(r), φa(r)) ∂rφa∂rφb+V (φa)]

As it stands, the term with the radial derivatives defines a
non-linear sigma model, i.e. a map from a d + 1
dimensional spacetime to a target space with metric f̄ ab.

However, note the N2 in front; this means that at large N,
the NLSM has a classical saddle point:
φa(r , x) = φa(r , x) +

1
Nϕa(r , x)

E.g. if the φa represents gravitons, the choice of the saddle
point represents the choice of a background spacetime:
hµν(r , x) = hµν(r , x) +

√
κδhµν(r , x)
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General case

Conformality and AdS

At large N, we get

Sbulk = N2Scl [φa] +

∫ r0

r ′
drddx [rd+1 f̄ ab(r ,ga(r), φa(r , x)) ∂rϕa∂rϕb

+ rd−1mab(r ,ga(r), φa(r , x))ϕaϕb + O(1/N)]

As we approach conformal point, we have the fixed point values
ga(r) → g∗

a . Also we must have φa(r) → φa
(spacetime-independent); so that Ssource = N

∫

ddxφa(x)TrΦa is
scale-invariant.
With this, we have

Sbulk =

∫ r0

r ′
drddx , rd+1 ∂rϕa∂rϕa + rd−1mabϕaϕbO(1/N)]

where we have set the constant f̄ ab = δab by appropriate
diagonalization and rescaling.
Note that for AdS,

√
g = rd−1,

√
ggrr = rd+1. Hence, at the

conformal point, the AdS structure emerges. [Note that we have
ignored x-derivatives so far.]
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General case

x-derivatives

In our little example considered before, let us revisit the diagram
contributing to the ϕ2 term

The loop integral
∫ Λ

k=0 schematically evaluates to Λ2f (k2/L2),
f (k2/L2) = 1 + k2/L2 + k4/Λ4 + ...

In the interval
∫ Λ

k=Λ−dΛ, we should get ΛdΛf̃ (k2/L2),

f̃ (k2/L2) = 1 + k2/L2 + k4/Λ4 + ...
Thus, we get

rd−1[r2(∂rϕa)
2 + mabϕaϕb + k2/r2ϕ(k)ϕ(−k)]

There is a conceptual issue regarding Wilson-Polchinski RG
(smooth vs hard cut-off).
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Conclusions and open issues

Need to complete the x-derivatives.

Vasiliev

New geometries?

Does the higher dimensional viewpoint help technically?

General covariance.

Compare with other approaches: Entanglement-DMRG,
Matrix models, ...
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