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Abstract

In spite of its intrinsic evolutionary instability, altruistic behavior in so-

cial groups is widespread in nature, spanning from organisms endowed with

complex cognitive abilities to microbial populations. In this study, we show

that if social individuals have an enhanced tendency to form groups and fit-

ness increases with group cohesion, sociality can evolve and be maintained

in the absence of strong assortative mechanisms such as kinship or mutual

recognition. When explicitly taken into account in a game-theoretical frame-

work, the process of group formation qualitatively changes the evolutionary

dynamics with respect to games played in groups of constant size. The evo-

lutionary consequences of the rules underpinning the group size distribution

are discussed for a simple model of microbial aggregation by differential

attachment, indicating a way to the evolution of sociality under minimal hy-

potheses on reciprocal recognition.
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1 Introduction3

The emergence and persistence of social ventures, where individuals concur to the4

sustainment of a community at the cost of a personal investment, has been clas-5

sically addressed in a game-theoretical framework. The evolution of cooperation6

has been first formalized in the context of dyadic interactions, where the formation7

of pairs and the accomplishment of the game are concomitant. When individuals8

play in couple, several mechanisms have been shown to effectively promote co-9

operation even for a Prisoner’s Dilemma type of interactions, where it is always10

in one own’s interest to defect in a single round of the game. Cooperation may be11

maintained if interacting individuals are genetically related (Hamilton, 1964) or if12

a sufficent assortment between carriers of the cooperative gene is ensured, for in-13

stance via the knowledge of the co-player’s past behavior (Trivers, 1971; Axelrod14

and Hamilton, 1981) or reputation (Nowak and Sigmund, 1998).15

Those results have then been extended to games involving a number N of play-16

ers, where the Public Goods Game plays the same prototypic role as the Prisoner’s17

Dilemma (Kollock, 1998). The PGG formalizes the so-called tragedy of the com-18

mons (Hardin, 1968; Rankin et al., 2007), whereby cheaters who do not contribute19

to the public goods are always better off, in a one-shot game, than cooperators that20

pay a cost to sustain the collective entreprise.21
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Sociality, however, relates not only to the act of helping others, but also af-22

fects the context where social games are played, among which the way groups23

are formed in the first place. In extending the framework from two players to N -24

players games, the processes that lead to group formation have often been over-25

looked in holding the group size constant.26

This assumption has been recently relaxed in different ways. Group size27

variations can be externally forced by imposing bottlenecks that periodically in-28

crease the variance among groups (Chuang et al., 2009), leading to a ’Simpson’s29

paradox’ in which cooperation is disavantaged locally but a winning strategy30

on the whole (Wilson, 1975). They can also result from demographic fluctua-31

tions (Hauert et al., 2006a) or facultative participation to the game (Hauert et al.,32

2002a,b). The effect of a fixed group size distribution with binomial allocation33

of individuals within groups has also been investigated in various types of games34

and can either promote or hinder cooperation (Peña, 2011).35

Group size can be directly affected by traits that co-evolve with cooperation.36

Pfeiffer and Bonhoeffer (2003) illustrated how group clustering (defined in terms37

of spatial proximity) is selected together with non-exploiting, cooperative behav-38

ior if resources are sufficiently concentrated. Avilés et al. (Avilés, 2002; van Vee-39

len et al., 2010) showed that grouping tendency and cooperativeness co-evolve in40

the emergence of sizable and cooperative groups. This result relies on two fea-41

tures of the model: on the one hand, while cooperation is costly, the ability to42

join groups is not ; thus, as soon as some cooperators are present in the popula-43

tion, individuals are better off in a group than alone, making the lonely lifestyle44
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unprofitable and the ’dispersed’ population structure unstable. On the other hand,45

the introduction of a hump-shaped fitness function implies from the start the exis-46

tence of intermediate ’optimal’ group sizes, at fixed average level of cooperation47

within the group. The cheating load is then twofold: ’freeloaders’ both hamper the48

benefits retrieved from the group and crowd them uselessly. Powers et al. (2011)49

similarly evidenced that inheritable aggregative features may evolve jointly with50

cooperation. They let players have a clear-cut group size preference, whereby51

groups form by gathering individuals sharing the same preference. In their model,52

cooperation ends up being tightly linked with small group sizes that support it53

more easily, even when direct selection pressures for large groups or weaker se-54

lection against cooperation is applied.55

In line with these studies, we address here the evolution of aggregative traits in56

a context that is dynamically shaped by the traits themselves. Such traits require57

an individual investment and produce collective benefits, and can therefore be re-58

garded as a cooperative strategy once individuals have been distributed in groups59

by the aggregation process. The quest for simple mechanisms allowing grouping60

to evolve is of particular relevance to understand how sociality can be maintained61

in microrganisms, where individuals interact in clusters of many individuals, a62

setting that is recognized as unfavorable to social ventures. We assume that indi-63

viduals have different tendencies to form cohesive aggregates, and that group co-64

hesion itself is a common good. In our model, individuals are thus endowed with65

a unique gene that codes for a costly trait (coined hereafter ’sociality’). The social66

trait promotes aggregative cohesion during both the group formation process and67
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the reproductive stage, where the fitness is the individual payoff in a PGG. The68

outcome of the social interaction is hence considered to hinge upon the physical69

properties of the groups: more cohesive groups are fitter than groups fragilized by70

looser attachment of the individuals they are composed of. This setting is relevant71

at least for several microbial organisms usually taken as examples of primitive72

social behavior (Crespi, 2001; West et al., 2006; Smukalla et al., 2008; Nanjudiah73

and Sathe, 2011), where physical stickiness is coupled to cooperative behavior74

once aggregates are formed.75

To evolve, an altruistic trait must ultimately entail some kind of assortment be-76

tween its bearers (Fletcher and Doebeli, 2009). When the gene giving rise to such77

assortment also codes for cooperative behavior, they are framed under the term of78

greenbeards (Gardner and West, 2010). This general definition actually brings79

together very different mechanisms able to generate assortment, including direct80

recognition of others’ traits and segregation in response to environmental features.81

Here, we will consider an instance of the latter, where assortment is an emergent82

property of the interactions among individual players. The environment is in this83

case shaped by the group formation process and therefore changes jointly with84

the frequency of the social strategy. We present a model showing that the rise of85

sociality can stem from merely quantitative differences in the probabilities of at-86

tachment, so that even mechanisms that do not produce assortment within groups87

of fixed size can lead to the evolution of sociality if group sizes are distributed.88

In section 2, we describe the evolutionary consequences of group formation89

schemes where social and asocial individuals differ quantitatively in their ability90
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to aggregate. Group formation is considered a ’black box’ generating the group91

size distributions experienced by players. The average fitness advantage of so-92

cial players is related to the distribution of group sizes players of each strategy93

belong to. We derive the condition for sociality to outcompete asociality under94

the assumption that no nepotistic grouping between social individuals generates95

assortment a priori. In section 3, we apply the results of section 2 to a toy model96

based on differential attachment and show that full sociality in a population can be97

attained, along with sizeable average group sizes, as soon as a threshold frequency98

of socials is overcome. We also stress the role of lonely individuals, usually ne-99

glected when fixed group sizes are considered, in the balance of benefits and costs100

of the social game. We eventually point out that our mechanism does not condemn101

large social groups, and may thus be relevant to account for sociality in microor-102

ganisms. Different interaction rules leading to non-zero a priori assortment are103

briefly addressed by numerical simulation. In section 4, we discuss the implica-104

tions of our results for biological systems and the perspectives in elucidating the105

mechanistic basis of group formation processes.106

2 Rooting payoffs in the group formation process107

In this work, we want to address the emergence and maintainance of social be-108

havior in organisms whose life cycle consists of a phase of aggregation, a phase109

of differential reproduction that modifies the frequencies of each type in the fol-110

lowing generation, and a dispersal phase (see Fig. 1). This requires resolving a111
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process, group formation, that happens on a time scale much faster than evolu-112

tionary changes. Our working assumption is that sociality consists primarily in a113

quantitative difference in the ability to aggregate, that affects both the group for-114

mation phase and the competitive success of aggregates. Once groups are formed,115

their cohesion constitutes a public good, so that fitter groups are those comprising116

a larger fraction of cohesive individuals.117

We assume that individuals are either social or asocial, these two strategies118

being genetically encoded. A social individual pays a cost c for being more119

aggregation-prone. Asocial individuals do not pay this cost and have a lower120

probability of aggregating. After group formation has occurred, both social and121

asocial players can be found inside a group or can remain alone. For the sake of122

generality, we do not explicit the grouping process, but characterize it by its out-123

come: the distributions ds(n) and da(n) (n ∈ N∗) of group sizes in which social124

(resp. asocial) individuals are found. During group formation, assortment may be125

generated within groups. For instance, processes leading to positive within-group126

assortment of social individuals may rely on preferential interactions (Wilson and127

Dugatkin, 1997), or on a probability to join a group proportional to the number of128

social players it contains (Avilés, 2002). In this section, we point out that whereas129

some kind of assortment is necessary for sociality to evolve, no preferentially as-130

sortative feature needs to be assumed a priori as soon as the group size is not fixed;131

as such, it is compatible with the scenario where groups form by random and blind132

interaction processes.133

Once groups are assembled, social players contribute b to a linear public goods134
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game (PGG), whereas asocial players do not contribute. When found within a135

group of size n with m social players, all individuals thus gain bm/n irrespective136

of their strategy. Different choices of the gain function (notably accounting for137

discount or synergy, as in Hauert et al. (2006b); Archetti and Scheuring (2010))138

are possible, but we opt here for the standard linear formulation, so as to focus139

only on the nonlinearities generated by the aggregation process. In particular,140

we stress that this formulation does not impose an a priori preference for a given141

group size, since the payoff only depends on the proportion and not on the absolute142

number of social players. We refer to Avilés (2002) for a model where the payoff143

is maximal at intermediate group sizes.144

We now focus on the aggregation stage, considering that the frequency of145

strategies does not change during group formation. Let us compute the average146

payoff of each (social or asocial) strategy in a population where a fraction x of147

individuals is social and a fraction (1−x) is asocial. After the aggregation process,148

social and asocial players belong to groups of variable sizes. A PGG is played149

within each group, and the resulting average payoffs for both types conditions the150

evolution of their frequencies at the next generation.151

We first consider groups of size n (n ≥ 2). Following Fletcher and Doebeli152

(2009), we split the payoff of each player in a part due to self and an other due to153

the interaction environment, that depends only on the composition of the group.154

The payoff due to self is b/n − c for a social player, who pays a cost −c for155

sociality and gets a share b/n of its own contribution to the common goods; for156

an asocial player, who does not contribute to the PGG, it is 0.157
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For a linear PGG, the payoff due to the interaction environment is proportional158

to the average number es(n) (resp. ea(n)) of social individuals among the n − 1159

coplayers of a social (resp. asocial) player, so that the average payoffs of social160

individuals in a group of size n is:161

Ps(n) =
b

n
es(n) +

b

n
− c (1)

and for asocial ones:162

Pa(n) =
b

n
ea(n) (2)

Considering all possible group sizes, the payoff for social and asocial indi-163

viduals is obtained as an averaged sum of these payoffs, weighted by the group164

size distributions ds(n) and da(n). In doing this, one has to consider separately165

the contribution of lonely individuals, who do not engage in a PGG, and whose166

payoffs are −c for socials and 0 for asocials.167

Since evolutionary consequences are measured in terms of relative advantages,168

we only display here the difference in the average payoff of social and asocial169

individuals:170

∆P (x) = − c ds(1) +
∑
n≥2

[ds(n)Ps(n)− da(n)Pa(n)]

= − c+
∑
n≥2

b ds(n)

n
+
∑
n≥2

b

n
[ds(n)es(n)− da(n)ea(n)] (3)

This formula is composed of three terms: the cost to the individual for its in-171
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vestment in a social action, which is payed also when the social player remains172

alone; the marginal gain for being social, averaged over groups of all sizes; and a173

third term combining the effect of within-group assortment to that of differential174

allocation in groups. While the second term necessarily declines when groups of175

larger size form in the population, the third term allows for different repartitions176

between groups (ds and da) to compensate for unfavorable average interaction177

environment within groups of a given size. This compensatory effect may in prin-178

ciple even overcome negative within-group assortment (i.e. ea(n) > es(n)).179

The “interaction neighborhoods” es(n) and ea(n) are in general different, e.g.180

if assortative mechanisms such as peer or group recognition are involved in the181

process of group formation. In these cases, the local environment of a social player182

is enriched in social players compared to that of an asocial one (es(n) > ea(n)).183

When only one group size is present in the population, from eq. 3 one immedi-184

ately retrieves the condition for the evolution of sociality found in (Fletcher and185

Doebeli, 2009). If group formation is governed by an extreme recognition process186

leading socials to form groups only with their kind (es(n) = n− 1 and ea(n) = 0187

for all n), the condition ∆P (x) > 0 reduces to b/c > 1/(1− ds(1)). This can be188

as small as 1 if all social individuals end up in a group, thus yielding the necessary189

assumption for sociality to possibly evolve.190

When groups of different size are present, sociality can however thrive even in191

the absence of such within-group assortment, i.e. when es(n) = ea(n) for all n ≥192

2. In this case of random within-group repartition, the interaction neighborhoods193
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are equal:194

es(n) = ea(n) = (n− 1) p(s|n) (4)

with p(s|n) the fraction of social players within groups of size n. Given the dis-195

tributions ds(n) and da(n), this fraction is:196

p(s|n) = ds(n) x

ds(n) x+ da(n) (1− x)
. (5)

In this case, eqs. 3, 4 and 5 thus yield:197

∆P (x) = −c+
+∞∑
n=2

b

n

[
(n− 1)

(ds(n)− da(n))x

(ds(n)− da(n))x+ da(n)
+ 1

]
ds(n) (6)

We have explicited the dependence of the payoff difference upon the fraction198

x of social players to remind that the population composition and the aggregation199

rules, which together determine the distributions ds and da, are held fixed during200

group formation.201

The fraction of social players will increase in the next generation whenever202

∆P (x) is positive, and the evolutionary equilibria xeq of the system are those203

such that ∆P (xeq) = 0. As exemplified by a toy model in the next section,204

sociality may be favored as soon as the distributions da(n) and ds(n) seen by the205

two strategies differ sufficiently. In the following, we will consider that selection206

is weak enough to guarantee a small change in frequencies from one generation to207

the next. The evolutionary dynamics is in this case approximated by a continuous-208
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time replicator equation (Taylor and Jonker, 1978; Schuster and Sigmund, 1983):209

ẋ = x (1− x)∆P (x), (7)

where the aggregation phase occurs infinitely fast with respect to evolutionary210

changes. If the time-scales of aggregation and evolution were not separated, the211

evolutionary dynamics would be more correctly described by a discrete-time repli-212

cator equation that displays a potentially much more complex behavior (Villone213

et al., 2011).214

In the next section, we illustrate our conclusions through a toy model with an215

explicit mechanism of aggregation underpinning different group size distributions216

for the two strategies. This mechanism is chosen such that it creates no within-217

group assortment. We can thus apply the equations derived in this section to study218

the evolutionary dynamics of the social strategy along with that of the group size219

distributions.220

3 Group formation by differential attachment221

In this section we apply the results of section 2 to an illustrative model where222

group formation is based on simple hypotheses regarding individual interactions.223

We show that the evolution of social behavior can be produced by an increase in224

individual ’stickiness’, and clarify the mechanism giving rise to assortment at the225

population level even in the absence of peer recognition. A social individual pro-226
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duces a costly ’glue’ that increases its chances to attach to any individual it comes227

in contact with. At the same time, he enhances overall group cohesion to a higher228

extent than an asocial individual more loosely glued to its group. This is consis-229

tent with our assumption that sociality entails differences both in the process of230

group formation, and in the contribution to group welfare. The following scheme231

for group formation is deliberately crude so as to remain analytically tractable and232

make the conditions for evolution of social attachment explicit. It is nonetheless233

an example of the evolution of social behavior via a biologically plausible mech-234

anism of ’blind’ interactions among unrelated individuals, where assortment is an235

emergent property of the group formation process.236

This model reflects some features of social microbes that are able to produce237

adhesive proteins at their surface. Although in some cases adhesion proteins are238

strain-specific and allow to recognize other bearers by direct matching, we can239

imagine that, in the early stages of social evolution, cells might have been en-240

dowed with generic adhesion-enhancing properties. In this case, one can regard241

’stickiness’ as an a priori property of a subpopulation of cells, that is energetically242

costly and entrains higher group-level productivity (e.g. in the search for prey,243

protection against predators, dispersal efficiency) since aggregates composed of a244

higher proportion of adhesive cells are more cohesive.245

This model mirrors the properties of, for instance, social amoebas and bacte-246

ria. These microbes are thought to possess inheritable social strategies, whereby247

cells have different propensity to sacrifice for the others, participating to the con-248

struction of the dead tissues of a fruiting body rather than becoming spores. The249
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success of the genes that are passed on to the following generation is hence de-250

termined by the composition of the spore pool in all the groups (fruiting bodies)251

that are formed within the population at the aggregation stage of the life cycle.252

Enhanced probabilities to end up in the stalk of the mushroom are moreover often253

found associated to a higher stickiness (Strassmann and Queller, 2011).254

3.1 A toy model for differential attachment255

We consider an infinite population composed of a fraction x of social and a frac-256

tion (1− x) of asocial individuals that differ in their attachment abilities. At each257

generation, aggregates form from sets of T individuals that are randomly drawn258

from the population pool. Group formation in each set is nucleated by one indi-259

vidual, named recruiter, that is chosen at random within the set. The remaining260

(T − 1) individuals are sequentially given one possibility to attach to the recruiter261

and hence to join the group. This one-shot adhesion step leaves some players262

outside the groups. Such lonely individuals are commonly observed in microor-263

ganisms (see for instance Smukalla et al., 2008) and will play a central role in the264

emergence of sociality in our model. Attachment probabilities are fixed for any265

couple of strategies: the probability of adhesion between two social individuals (a266

social individual and an asocial individual; two asocial individuals) is denoted by267

πss (resp. πas;πaa).268

Social individuals attach more efficiently, so that πss ≥ πas ≥ πaa. Moreover,269

we choose these probabilities such that the two strategies have equal expectations270

on the proportion of socials among the players they attach to. This hypothesis271
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reflects the requirement that interactions are not assortative a priori, unlike when272

social individuals recognize and select groups that are composed of a larger frac-273

tion of social players. For a given composition of the population, the condition for274

’blind interaction’ reads:275

xπss

xπss + (1− x)πas

=
xπas

xπas + (1− x)πaa

, (8)

that is verified for every x when:276

πas =
√
πssπaa (9)

When πas ≤ √
πssπaa, the expected proportion of social co-players is higher277

for social than for asocial individuals, i.e. positive assortment among socials278

would occur if the interactions were only pair-wise. On the other hand, πas ≥279

√
πssπaa would denote prior negative assortment in a dyadic context. In our an-280

alytical calculation, we will choose attachment probabilities satisfying eq. 9, but281

we will relax this assumption at the end of the section and consider rules of at-282

tachment generating non-null prior assortment.283

3.2 Group size distributions and payoff difference284

In the SI, we analytically derive the size distributions for social and asocial types285

given the previously described mechanism for group formation. These distribu-286

tions are illustrated in Fig. S1. They are the superposition of a component in n = 1287
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(players remaining alone) and of two binomial distributions of respective averages288

T Qs(x) = T [xπss + (1− x)πas] and T Qa(x) = T [xπas + (1− x)πaa]. Their289

relative weights depend on the social type: social individuals are less often alone290

than asocials. Increasing the fraction of social individuals, the two nonsingular291

distributions displace towards higher group sizes.292

Knowing the group size distributions emerging from the aggregation process,293

the payoff difference ∆P (x) can be computed for a given composition of the294

population. Figure 2 shows such payoff difference obtained by sustituting eqs. 1295

and 2 in the SI in eq. 6. ∆P (x) is displayed for different values of the game296

parameters b and c and the aggregation parameters πss, πaa and T . The advantage297

of social over asocial players increases monotonically with x, and is zero at most298

at one (unstable) equilibrium x∗.299

3.3 Evolutionary dynamics and effect of the parameters300

The internal equilibrium x∗ exists in a large region of the parameters space. In301

this region, the evolutionary dynamics ruled by the replicator equation (eq. 7)302

is bistable, with two additional stable monomorphic equilibria of full asociality303

x = 0 and full sociality x = 1. Sociality invades as soon as x is larger than the304

threshold value x∗. Once established, full sociality is stable against the invasion305

by asocials. This scenario is qualitatively different from the case of one single306

group size, where the evolutionary dynamics can only lead to full asociality for307

linear PGG.308

Figure 3 recapitulates the evolutionary dynamics by displaying the threshold309
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frequency x∗ for sociality to invade. Figure 3a confirms that sociality evolves more310

easily the bigger the difference between social and asocial individuals’ attachment311

probabilities. Figure 3b shows that the threshold frequency x∗ decreases, as one312

would expect, as b/c increases. The region where sociality is evolutionary stable is313

larger than the region where the social behaviour implies direct benefits, i.e. when314

the marginal gain of a social individual is larger than c (Wilson, 1979; Pepper,315

2000). We refer to section 2 of the SI for the definition and calculation of the316

condition that delimits such region where sociality trivially evolves. Figure 3317

shows that sociality evolves and is maintained in the population for a wide range318

of nontrivial parameters, that is even when it is an essentially altruistic act.319

The threshold x∗ increases with T , consistently with the common claim that320

the evolution of altruism is easier in small groups (Olson, 1971). However, when321

T → +∞, it converges to a value x∗ < 1 (Fig. 2c), meaning that there exist a crit-322

ical initial frequency of social individuals such that sociality will invade whatever323

is the maximal group size.324

The fact that x∗ is always positive means that, in general, an infinitesimal ini-325

tial load of social players, as is generated by extremely rare random mutations, is326

not sufficient for sociality to evolve in the first place. However, when the threshold327

is low, numerous mechanisms can lead the frequency of the social strategy over328

the threshold, e.g. random fluctuations due to finite-size effects, non-infinitesimal329

mutation rates or incomplete reshuffling from one generation to the next. Numer-330

ical simulations show that in finite populations subjected to a small mutation rate331

the evolution of sociality is indeed easier than analytically expected.332
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Figure 4 displays the coupled dynamics of the social strategy and of the group333

size distributions in a numerical simulation of a large population (see section 3 of334

the SI for details on the algorithm). Initially, only asocial individuals are present335

in the population, and the threshold is reached thanks to random mutations. As the336

frequency of social individuals increases, groups of progressively larger size form337

and concomitantly the fraction of lonely individuals decreases. The difference338

between the distributions for social and asocial individuals is enhanced by the fact339

that the balance between the solo and group components of these distributions is340

affected in opposite directions by the evolutionary dynamics.341

When all players are social, a fraction 1 − πss of individuals remains alone,342

while the others belong to groups binomially distributed around an average size343

Tπss. Notice that the group size at the social equilibrium is not influenced by344

the parameters b and c defining the public goods game, but only by parameters345

determining the group formation process. In particular, the average group size346

arising in fully social populations linearly depends on the maximal possible group347

size T . Although higher cooperation levels are believed to occur more easily in348

small groups, group formation by differential attachment thus does not impose349

an a priori burden on large groups. This suggests that unsophisticated interaction350

rules may be relevant in explaining how sociality is maintained in the microbial351

world, where social aggregates are commonly composed of a large number of352

cells, e.g. thousands of them in flocculating yeast (Smukalla et al., 2008), or up to353

105 in D. discoideum (Tang et al., 2002).354
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3.4 Other rules for group formation355

So far, we have assumed that players undergo blind interactions whereby individ-356

uals attach, according to their strategies, with probabilities πaa, πas and πss in geo-357

metric progression, ensuring no a priori assortment. However, other formulations358

of the adhesion probability, reflecting different settings of pairwise interactions,359

can be contemplated, and will in general result in non-random assortment within360

groups of fixed size. In these cases, eq. 6 does not hold any longer, but the pay-361

off difference can anyway be numerically computed by repeatedly simulating the362

aggregation process.363

Figure 5 displays the difference in payoff between social and asocial players364

for the two cases where the attachment probabilities take up their extreme values:365

πas = πss and πas = πaa. In these model configurations, it is the asocial (resp.366

social) coplayer that takes the lead in deciding the outcome of binary interactions.367

The first rule, where the asocial-social attachment probability is maximal, reduces368

the threshold for sociality to spread in the population. At the same time, the fully369

social equilibrium is destabilized: when chances to encounter a social individ-370

ual are high, sociality becomes a ’wasted investment’ and asociality is favored371

again. The resulting evolutionarily stable equilibrium is polimorphic: the social372

and asocial strategies coexist. On the contrary, when the social-asocial attachment373

probability is minimal, the invasion barrier x∗ is more difficult to reach compared374

with null a priori assortment. However, the fact that asocials are more efficiently375

segregated when the population is largely social, makes the fully social equilib-376

rium even more stable with respect to larger attachment probabilities. Any other377
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choice for πas such that πaa ≤ πas ≤ πss leads to thresholds x∗ between those two378

extremal values. Therefore, the potential for social behavior to become stable in379

the population is not challenged by the amount of a priori assortment generated380

by the attachment rules.381

4 Discussion382

4.1 Social groups formation and evolution383

In this work, we address the coupling between the process of group formation384

and the evolutionary dynamics of individual ’social’ traits that affect both aggre-385

gation propensity and group cohesion, e.g. cell-to-cell adhesiveness. In addition386

to entailing a different contribution to group welfare, such traits undepin a dif-387

ference in expected group size distributions. This difference ultimately generates388

assortment at the population level even in the absence of preferentially directed389

interactions based on peer recognition. Rather, we evidence that, whenever the390

size of groups is not fixed, simple non-assortative rules can still generate average391

local environments that favor the evolution of sociality even when it is not associ-392

ated to direct benefits. We have illustrated our claim via a toy model where groups393

form by blind interactions among individuals with different attachment abilities,394

stemming for instance from signalling or due to the production of a costly glue.395

In this deliberately simple setting, we showed that even when attachment rules are396

indiscriminate toward the strategies of partners (and groups of any size are ran-397

domly assorted), socials individuals fare better than asocials thanks to the distinct398
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allocations of the two type in group of various sizes and in particularto differ-399

ent chances of ending up alone. The emergent population structure gives rise to400

a Simpson’s paradox where one strategy’s advantage is reversed when one goes401

from the group to the population level. This has already been related to the evolu-402

tion of cooperation when group size changes in time (Hauert et al., 2006a; Chuang403

et al., 2009). It is noteworthy that in our toy model there is no intrinsic limitation404

to the size of the evolutionarily viable groups, contrary to most previous models405

of N -players games (e.g. Matessi and Jayakar, 1976; Powers et al., 2011). This406

suggest that sociality in large groups, such as in microbial communities, can be407

sustained with unsophisticated mechanisms that do not require information trans-408

fer between partners.409

4.2 Aggregative sociality in microorganisms410

In the microbial world, the formation of biofilms and their cohesion are reckoned411

to be beneficial to cells in many respects (Velicer, 2003). In several microor-412

ganims, the same costly individual traits that support the stability of groups may413

enhance the probabilities for cells to be part of them in the first place. Velicer and414

Yu featured costly ’stickiness’ as an adaptive prerequisite in swarming microor-415

ganisms (Velicer and Yu, 2003). In D. discoideum, the production of cell-adhesion416

molecules required for the aggregation cycle is thought to reduce the chances to417

become a spore: more adhesive strains are primarily found in the dead tissues of418

the fruiting body (Ponte et al., 1998; Strassmann and Queller, 2011). Myxobacte-419

ria form multicellular aggregates as well, that enhance survival by decreasing pre-420
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dation and favoring disperal (Shimkets, 1986a,b). Both agglutination and social421

cohesion are mediated in these bacteria by the production of a costly extracellular422

matrix of fibrils, increasing at the same same time cell adherence and enabling423

collective gliding (Velicer and Yu, 2003). Mutations that affect a gene located at424

a single locus impair fibril binding and result in both lower cell-cell adhesion and425

cohesion of aggregates (Shimkets, 1986b). In S. cerevisiae, an adhesion protein426

expressed by a social gene (FLO1) prompts individuals to form flocs that pro-427

vide them with enhanced resistance to chemical stresses (Smukalla and al., 2008).428

When this strain is mixed with non-flocculating variants, heterogeneous aggre-429

gates still contain a majority of FLO1+ cells, while individuals outside groups430

are more often FLO1−, thus denoting assortment emerging from mere different431

adhesive abilities.432

Although the processes involved in group formation become more complex as433

the cognitive abilities of players increase, our general conclusions might be also of434

interest for higher organisms that interact via mechanisms parallel to physical ad-435

hesiveness. For instance, Dunbar interpreted grooming in monkeys as a behavior436

likely to provide higher grouping opportunities as well as cement social bond-437

ing once the group is formed (Dunbar, 1993), and further extended the argument438

to humans, based on the presumed genetic foundations of language (Pinker and439

Bloom, 1990). Even if we have focused here on an aggregation mechanism that440

is more promptly related to social microrganisms, our conclusions hold in general441

for any inheritable trait, not necessarily involving physical adhesion, that plays a442

role both in group formation and group cohesion.443
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4.3 Non-nepotistic greenbeards?444

In our model, assortment is generated among carriers of the social gene alone, and445

does not involve the whole genome. Therefore, sociality here pertains to green-446

beard mechanisms as termed by the recent classification of Gardner and West447

(Gardner and West, 2010; West et al., 2007). In their review, the authors stressed448

that such genes need not code for conspicuous traits as was posited in the origi-449

nal formulations (Hamilton, 1964; Dawkins, 1976). We argue that assortment at a450

single locus does not require nepotistic behavior of the gene towards other carriers451

neither, at least not in the usual sense imposed by dyadic or fixed-N frameworks.452

Indeed, assortment may mechanistically occur even when social individuals inter-453

act with each type in the same proportions as asocial individuals, provided they454

do it more often. A blind increase in the propensity to interact can thus have the455

same effect as preferentially directed interactions with peer discrimination, that456

may be more demanding on the cognitive level. This might be of interest for the457

interpretation of social behavior in organisms where the existence of recognition458

mechanisms is not straightforward. More in general, it might be useful to disen-459

tangle more explicitly greenbeard mechanisms that rely on active sorting of inter-460

action partners from passive, indiscriminate mechanisms generating assortment461

with weaker requirements (Eshel and Cavalli-Sforza, 1982). Such differentiation462

would echo and complement that of ’obligate’ vs. ’facultative’ greenbeards for-463

mulated in the case of dyadics interactions (Gardner and West, 2010).464
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4.4 Toward a re-evaluation of the group formation step465

We have stressed that the process of group formation can play an essential role in466

the unfolding of the evolutionary dynamics of social traits. A complete account of467

the evoution of cooperative groups requires to trace back the entire process lead-468

ing to their formation. The toy model used here is a useful tool for illustrating our469

conclusion in a simple and extreme setting. It is however missing many features470

of actual biological systems. One could instead wish to predict, based on indi-471

vidual properties of physical attachment, the group size dynamics and the degree472

and nature of assortment between the social and asocial types in a more realis-473

tic aggregation model. This requires to further specify the mechanism of group474

formation, and notably explicit the individual rules of interaction and the topol-475

ogy structuring individual encounters. For organisms moving on a plane, such as476

cells gliding on a surface, grouping patterns and the resulting group size distri-477

butions have been mimicked by models based on simple rules (e.g. Okubo, 1986;478

Vicsek et al., 1995; Bonabeau et al., 1999). Recently, social games have been479

implemented in explicit schemes of aggregation for self-propelled particles inter-480

acting locally with their neighbors (Chen et al., 2011). The way aggregative traits481

themselves can be sustained in a landscape shaped by a realistic group formation482

process however is still to be explored. Yet, the propensity to seek interactions,483

before that of behaving altruistically once the interaction is established, may be484

the very first, and a prerequisite, of all social actions.485
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