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Group graded rings

Recall that an (associative, with 1) ring A is graded by a group G
if it admits is a decomposition

A =
⊕
g∈G

Ag (1)

as an abelian group such that

AgAh ⊆ Agh (2)

for every g , h ∈ G .

The abelian group Ag is termed the g-th homogeneous
component of A.
The multiplicative condition (2) yields that the e-component Ae is
a ring, termed the base ring of A, and that (1) determines a
decomposition of A as an Ae-bimodule.
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Graded equivalence

There are few ways to define equivalence of graded rings in such a
way that respects their grading.

A graded-equivalence between two graded rings

A =
⊕
g∈G

Ag , B =
⊕
h∈H

Bh,

is a pair (ψ, φ), where ψ : A→ B is a ring isomorphism and
φ : G → H is a group isomorphism such that ψ(Ag ) = Bφ(g) for
any g ∈ G .
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Structure of crossed products

A G -graded ring A =
⊕

g∈G Ag is a crossed product if there is an
invertible homogeneous element ug ∈ Ag for every g ∈ G .

In this case Ag = Aeug = ugAe , and hence A =
⊕

g∈G Aeug .
Let R := Ae , then we usually write

R ∗ G =
⊕
g∈G

Rug .

Any element in R ∗ G is written as
∑

g∈G βgug with uniquely
determined coefficients {βg}g∈G ⊂ R.
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Structure of crossed products

Suppose that the base ring R of a crossed product is commutative.

Since the product in R ∗ G respects the G -grading, that is

Rug · Ruh = Rugh, ∀g , h ∈ G , (3)

then R ∗ G determines a G -action on the base ring R via the rule

η :
G → Aut(R)

g(r) := ug ru
−1
g

, g ∈ G , r ∈ R. (4)

Equation (3) gives rise to a two-place function

f :
G × G → R∗

(g , h) 7→ uguhu
−1
gh

, (5)

where R∗ denotes the multiplicative group of units of R.
Associativity of R ∗ G yields that (5) is a 2-cocycle.
To keep the action (4) and the 2-cocycle f ∈ Z 2

η (G ,R∗) in mind,

we denote the corresponding crossed product by R f
η ∗ G .
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Families of crossed products

Certain crossed products draw special attention.

When the G -module structure on the base ring R is trivial, in other
words, when R is central in R f

η ∗ G , then the crossed product

R f
η ∗ G , or just R f ∗ G , is called a twisted group ring.

On the other hand, when the 2-cocycle f ∈ Z 2
η (G ,R∗) is

identically 1, the corresponding crossed product R1
η ∗ G is called a

skew group ring.
A skew group ring which is also a twisted group ring is just an
(ordinary) group ring RG .
An important family of crossed products arises when R is a field
and η is a Galois action admitting a fixed field K. In this case
R f
η ∗ G is K-central simple and is called a classical crossed

product.
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Cyclic crossed products

When G := Cn is a cyclic group of order n, a crossed product
R f
η ∗ Cn is isomorphic to

R[y ; η]/〈yn − β〉,

where R[y ; η] is the skew polynomial ring, whose indeterminate y
acts on R via the automorphism η(σ) and β ∈ R∗ is η-invariant.
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Linear codes, constacyclic codes

Let R be a commutative ring with 1.

An R-linear code of length n is an R-sublattice of the free
R-module M := Rn (called the ambient space).
A code W of length n is cyclic if

(x1, x2 · · · , xn) ∈W ⇒ (xn, x1, · · · , xn−1) ∈W .

More generally, W is β-constacyclic for some β ∈ R∗ if

(x1, x2 · · · , xn) ∈W ⇒ (βxn, x1, · · · , xn−1) ∈W .

As can easily be verified, constacyclic codes are ideals of the
twisted cyclic group ring R[y ]/〈yn − β〉.
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Crossed product codes

More general families, namely group codes, skew constacyclic
codes and classical crossed product codes have been well-studied
and shown to yield good parameters.

Although not always explicitly presented in this way, all of those are
ideals of certain crossed products R ∗ G which are lattices over R.
The length of such codes is the cardinality of G , and their rank as
free R-modules is often denoted as their dimension.
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Hamming isometry

Let B be an R-basis of an R-lattice M. We say that the pair
(M,B) is a based R-lattice.

Such a based R-lattice determines a Hamming weight

HB :
M → N∑

b∈B rbb 7→
∣∣{b| rb 6= 0}

∣∣,
which, in turn, furnishes M with a metric space structure.
Note that the unit sphere in the metric space (M,B) is the set of
nonzero “monomials” {rb}r∈R,b∈B.
The quality of a code, given as a sublattice of the based R-lattice
(M,B), is measured by the minimal Hamming distance between its
elements (as well as by its length and rank).
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An isometry between two based R-lattices (M,B) and (M ′,B′) is
defined to be an invertible R-module morphism ρ : M → M ′ that
satisfies

HB′(ρ(m)) = HB(m) (6)

for every m ∈ M.

Based lattices are called isometric if such an isometry does exist.
A based lattice can be mapped isometrically to itself. We say that
an R-module automorphism ρ : M → M is an isometry of (M,B) if

HB(ρ(m)) = HB(m), ∀m ∈ M. (7)

We stress that the base B determines the metric in both sides of
(7). The isometries of a based R-lattice (M,B) evidently form a
group under composition of maps.
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Hamming classification of skew constacyclic code space

Any isometry ρ : M → M ′ between (M,B) and (M ′,B′) maps the
unit sphere of one space onto the unit sphere of the other, hence
yields a (unique) bijection ρ′ : B → B′ such that

ρ(b) = rbρ
′(b), ∀b ∈ B (8)

for some rb ∈ R∗.

In fact, given a bijection ρ′ : B → B′ and invertible coefficients
rb ∈ R∗, condition (8) is also sufficient for a based R-module
morphism ρ : (M,B)→ (M ′,B′) to be an isometry.
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Clearly, isometric lattices M and M ′ are of the same rank, say n.

Denote the bases elements B = {bi}ni=1, and B′ = {b′i}ni=1.
Then the bijection ρ′ determines a permutation in the symmetric
group Σn on n elements.
By (8), the group Γn(R) of isometries of a based R-lattice (M,B)
of rank n is generated by two subgroups, namely the above
symmetry group Σn, and the group of invertible diagonal
isometries given by n-tuples (rb1 , . . . , rbn) ∈ (R∗)n as in (8) (with
the identity permutation).
More precisely, Γn(R) is the wreath product

Γn(R) = R∗ o Σn = (R∗)n o Σn, (9)

where Σn acts on n-tuples of R∗ by permutations.
The group Γn(R) is called the monomial group of the lattice Rn.
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Crossed Products
Hamming isometry of codes

Hamming classification of skew constacyclic code space

As shown above for constacyclic codes, an R-lattice M can be
equipped with an additional ring structure (admitting R as a
subring).

In this case, a code in the ambient space M is usually considered
as an ideal of M which is also an R-sublattice.
An isometry of based R-lattice rings is defined to be a based
R-lattices isometry which is also a morphism of rings.
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Hamming classification of skew constacyclic code space

Hamming metric on crossed products

Crossed products ambient spaces are regarded as based R-lattices
with a G -graded R-basis of units B := {ug}g∈G .

The corresponding Hamming weight on R f
η ∗ G is

HB :
R f
η ∗ G → N∑

g∈G βgug 7→
∣∣{g | βg 6= 0}

∣∣,
It is not hard to verify that an isometry between two crossed
products of G over R is nothing but G -graded equivalence as
defined above.

Yuval Ginosar and Aviram R. Moreno University of Haifa Crossed Products and Coding Theory



Crossed Products
Hamming isometry of codes

Hamming classification of skew constacyclic code space

Hamming metric on crossed products

Crossed products ambient spaces are regarded as based R-lattices
with a G -graded R-basis of units B := {ug}g∈G .
The corresponding Hamming weight on R f

η ∗ G is

HB :
R f
η ∗ G → N∑

g∈G βgug 7→
∣∣{g | βg 6= 0}

∣∣,

It is not hard to verify that an isometry between two crossed
products of G over R is nothing but G -graded equivalence as
defined above.

Yuval Ginosar and Aviram R. Moreno University of Haifa Crossed Products and Coding Theory



Crossed Products
Hamming isometry of codes

Hamming classification of skew constacyclic code space

Hamming metric on crossed products

Crossed products ambient spaces are regarded as based R-lattices
with a G -graded R-basis of units B := {ug}g∈G .
The corresponding Hamming weight on R f

η ∗ G is

HB :
R f
η ∗ G → N∑

g∈G βgug 7→
∣∣{g | βg 6= 0}

∣∣,
It is not hard to verify that an isometry between two crossed
products of G over R is nothing but G -graded equivalence as
defined above.

Yuval Ginosar and Aviram R. Moreno University of Haifa Crossed Products and Coding Theory



Crossed Products
Hamming isometry of codes

Hamming classification of skew constacyclic code space

Distinct choices of an algebra structure and a basis, without which
one cannot have a Hamming distance, may essentially yield the
same codes.

For example, H.Q. Dinh (2008) gave an example of an algebraic
isometry between two “based lattices”, one of which determines
certain negacyclic codes (constacyclic with β = −1) while the
other one determines certain cyclic ones.
It is therefore natural to mod out ambient code spaces by the
isometry equivalence relation.

Problem

Let G be a group, R a commutative ring and η : G → Aut(R).
Determine the Hamming isometric classes R f

η ∗ G over the
2-cocycles f ∈ Z 2

η (G ,R∗).
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Hamming isometry classification

The set
Autη(G ) := {ψ ∈ Aut(G )|η ◦ ψ = η}

is a subgroup of the automorphism group Aut(G ), which admits a
natural action on the corresponding cohomology group H2

η (G ,R∗).
We have

Theorem

Two crossed products R f
η ∗ G and R f ′

η ∗ G are isometric if and only
if [f ] and [f ′] belong to the same orbit under the Autη(G )-action
on H2

η (G ,R∗). In other words, fixing an action η, the Hamming

isometry classes of crossed products R f
η ∗ G are in one-to-one

correspondence with the quotient set H2
η (G ,R∗)/Autη(G ).
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Hamming classification of skew constacyclic code space

The group of isometries of a crossed product R f
η ∗ G is a subgroup

of the monomial group (that is, the isometries only as based
R-lattices) Γ|G |(R) = (R∗)|G | o Σ|G |, generated by (R∗)|G | and by
a subgroup of Σ|G | (see equation (9)) as follows.

The group of diagonal isometries (R∗)|G | does not change the
cohomology class, i.e. yields crossed products R f ′

η ∗ G such that
the cocycles f ′ ∈ Z 2

η (G ,R∗) are cohomologous to f .
The permutations in Σ|G | which take care of the multiplicative
property of the isometries which correspond to the compatible
automorphisms Autη(G ).

Corollary

The isometry group of a crossed product R f
η ∗ G is

(R∗)|G | o Autη(G ),

where Autη(G ) acts on (R∗)|G | as a subgroup of Σ|G |.
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Cyclic crossed products over finite fields

The ingredients in the cyclic case are a cyclic group Cn = 〈σ〉, a
finite field Fqr , where q is any prime number, and an action

η :
Cn → Aut(Fqr )
σ 7→ ϕk ,

where
ϕ : x 7→ xq, x ∈ Fqr

is the Frobenius automorphism, which generates the cyclic group
Aut(Fqr ) ∼= Cr .
We may assume that

k ∈ div(r).
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Firstly,

m := gcd

(
qk − 1,

nk

r

)
=
∣∣H2

η (Cn,F∗qr )
∣∣ .

Next, define an equivalence relation ∼η on the set

Aη := {1, · · · ,m}.

Two elements a, b ∈ Aη are ∼η-equivalent if aj ≡ b(mod m) for
some integer j such that

gcd(j , n) = 1, and j ≡ 1
(

mod
r

k

)
.

Theorem

Let η : σ 7→ ϕk be an action of a cyclic group Cn on a finite field
Fqr . Then there is a one-to-one correspondence between the
Hamming isometry classes of the crossed products (Fqr )

f
η ∗ Cn, and

the quotient set Aη/ ∼η as above.
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Isometry of constacyclic ambient spaces

A consequence of the above theorem for trivial η re-establishes a
result of B. Chen, Y. Fan, L. Lin and H. Liu (2012) for constacyclic
codes.

Corollary

The Hamming isometry classes of ambient spaces of
Fqr -constacyclic codes of length n, namely the twisted group
algebras (Fqr )

f ∗ Cn, are in one-to-one correspondence with the set
of divisors

div(gcd(qr − 1, n)).
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Isometry of constacyclic ambient spaces

A consequence of the above theorem for trivial η re-establishes a
result of B. Chen, Y. Fan, L. Lin and H. Liu (2012) for constacyclic
codes.
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As another consequence we can determine when negacyclic codes
of length n over the field Fqr are essentially cyclic.

In order to formulate the answer in arithmetic terms we decompose
the integers n and qr − 1 = |Fqr | to their 2-part and odd-part, that
is

qr − 1 = 2l1m1, n = 2l2m2,

where m1 and m2 are odd.
We have

Theorem

Negacyclic codes of length n over the field Fqr are essentially cyclic
if and only if either

1 q = 2, or

2 q > 2 and l1 > l2.
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