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Outline of the talk

Kazhdan isomorphism over close local fields

Local class field theory and the local Langlands correspondence

Applications of Kazhdan’s theory to the local Langlands

correspondence

Generalizing Kazhdan’s theory to non-split groups



Notation

F : a non-archimedean local field

OF : ring of integers

pF : its maximal ideal

f = OF /pF denote the residue field of F .

A non-archimedean local field is:

is a finite extension of Qp (these are the non-archimedean local fields of

characteristic 0)

or

is isomorphic to Fq((t)), (where q = pn), the field of formal Laurent series

in the indeterminate t. (these are the non-archimedean local fields of

characteristic p).
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Smooth representations of G(F )

Let G be a connected, reductive group over F .

A smooth representation of G(F ) is a pair (σ, V ) where

V is a C-vector space.

σ : G(F )→ GL(V ) such that for each v ∈ V , there is a compact

open subgroup K of G(F ) such that σ(k) · v = v for all k ∈ K.

It is called admissible if V K is finite dimensional for each compact open

subgroup K of G(F ).
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The Hecke algebra H(G(F ), Km)

Let G be split, connected reductive group defined over Z (Some examples

are G = GLn,GSp4, SO2n+1).

Let Km = Ker(G(OF )→ G(OF /p
m
F )) be the m-th usual congruence

subgroup of G.

The Hecke algebra H(G(F ),Km) is the C-span of

{vol(Km; dg)−1 char(KmxKm) | x ∈ G}. This is an algebra with product

given by convolution.

Given an irreducible representation (σ, V ) of G(F ), the space V Km is a

simple H(G,Km)-module. More generally, the functor V → V Km is an

eqvivalence of catagories between the category of representations of G(F )

that are generated by their Km-fixed vectors and the category of modules

over H(G,Km).
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Close local fields

Definition

Let m ≥ 1. Two non-archimedean local fields F and F ′ are m-close if the

quotient rings OF /p
m
F and OF ′/pmF ′ are isomorphic.

Example

The fields Fp((t)) and Qp(p
1/m) are m-close.

In fact,

Zp[p1/m]/(p) ∼= Zp[X]/(Xm − p, p) ∼= Fp[X]/(Xm) ∼= Fp[[X]]/(Xm).

Note

Given a local field F ′ of characteristic p and an integer m ≥ 1, there is a

non-archimedean local field F of characteristic 0 such that F ′ is m-close

to F .
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Kazhdan isomorphism

G - split, connected reductive group defined over Z.

Let Km = Ker(G(OF )→ G(OF /p
m
F )) be the m-th usual congruence

subgroup of G. Consider the Hecke algebra H(G(F ),Km). Note that

G(OF )/Km
∼= G(OF ′)/K ′m

when the fields F and F ′ are m-close.

Theorem (Kazhdan)

Let F be a non-archimedean local field and let m ≥ 1. There exists l ≥ m
such that for any local field F ′ that is l-close to F , the Hecke algebras

H(G(F ),Km) and H(G(F ′),K ′m) are isomorphic.
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Kazhdan isomorphism

An irreducible representation (σ, V ) of G(F ) such that V Km 6= 0 is a

simple H(G(F ),Km)-module.

If the fields F and F ′ are sufficiently close,

the Kazhdan isomorphism gives a bijection between

{Irreducible representations (σ, V ) of G(F ) such that V Km 6= 0}
Kazm←→

{Irreducible representations (σ′, V ′) of G(F ′) such that V ′K
′
m 6= 0}.

So the Kazhdan isomorphism enables us to compare representations of

p-adic groups over close local fields.

This isomorphism has come applications in the study of the local

Langlands conjectures, which we now recall.



Kazhdan isomorphism

An irreducible representation (σ, V ) of G(F ) such that V Km 6= 0 is a

simple H(G(F ),Km)-module. If the fields F and F ′ are sufficiently close,

the Kazhdan isomorphism gives a bijection between

{Irreducible representations (σ, V ) of G(F ) such that V Km 6= 0}
Kazm←→

{Irreducible representations (σ′, V ′) of G(F ′) such that V ′K
′
m 6= 0}.

So the Kazhdan isomorphism enables us to compare representations of

p-adic groups over close local fields.

This isomorphism has come applications in the study of the local

Langlands conjectures, which we now recall.



The Galois group and the Weil group

Note that we have an exact sequence

1 Gal(F̄ /F un) Gal(F̄ /F ) Gal(F un/F ) 1



The Galois group and the Weil group

Note that we have an exact sequence

1 Gal(F̄ /F un) Gal(F̄ /F ) Gal(F un/F ) 1

1 Gal(F̄ /F un) Z 1



The Galois group and the Weil group

Note that we have an exact sequence

1 Gal(F̄ /F un) Gal(F̄ /F ) Gal(F un/F ) 1

1 Gal(F̄ /F un) WF Z 1



The Galois group and the Weil group

Note that we have an exact sequence

1 Gal(F̄ /F un) Gal(F̄ /F ) Gal(F un/F ) 1

1 Gal(F̄ /F un) WF Z 1

WF is called the Weil group of F .



The Galois group and the Weil group

Note that we have an exact sequence
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WF is called the Weil group of F . The group Gal(F̄ /F un) is denoted by

IF and is called the inertia group of F .



Local class field theory

Local class field theory is a study of finite abelian extensions of a local

field.

The main theorem gives a topological isomorphism

φF : F× →W ab
F

that induces an isomorphism

F̂×
∼=→ Gal(F̄ /F )ab.

Here F̂× ∼= O×F × Ẑ is the profinite completion of F× (Note that

F× ∼= O×F × Z).
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Local class field theory

The inertia group IF admits a nice descending filtration of ramification

subgroups with upper numbering {ImF } and the isomorphism

φF : F× →W ab
F

in fact maps

O×F → IabF and 1 + pmF
φF−→ (ImF )ab.

Hence local class field theory gives an isomorphism

Hom(F×,C×) ∼= Hom(W ab
F ,C×) ∼= Hom(WF ,C×).
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The local Langlands correspondence

The local Langlands correspondence can be seen as a vast set of

conjectures that generalize this one dimensional version of class field

theory.

Let G = GLn. To describe the correspondence, we replace

Hom(F×,C×) { Irreducible smooth representations of GLn(F )}

and

Hom(WF ,C×) { semi-simple n-dim. representations of WDF }.

Here WDF := WF × SL2(C) is the Weil-Deligne group of F .
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Semi-simple representations of WF

On the other side of the Langlands correspondence, we have to take

n-dimensional semisimple representations of WDF .

First, an n-dimensional irreducible representation of WF is a pair (φ, V )

where

dimC(V ) = n,

φ : WF → GL(V ) is such that every vector v ∈ V has open stabilizer

in WF .

It has no non-zero proper WF -invariant subspaces.

It is semisimple if it is a sum of its irreducible subspaces.



Representations of WDF?

Next, why should be consider representations of WDF = WF × SL2(C)?

It turns out that the n-dimensional semisimple representations of WF are

not enough to account for all irreducible smooth representations of

GLn(F ) under the Langlands correspondence.

One can use parabolic induction to obtain a representation for GLn(F )

using irreducible representations of GLn1(F )× · · ·GLnk
(F ),

n1 + n2 + · · ·nk = n, and such a representation is, in general, not

irreducible. One needs semisimple n-dimensional representations of WDF

to account for the irreducible summands of such representations under the

LLC.
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The local Langlands correspondence for GLn can be described a follows:

There is a bijection between

{ Irreducible smooth representations of GLn(F )}
LLC←→ { semi-simple n-dim. representations of WDF }.

σ → φσ (0.1)
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ε(s, σ × τ, ψ)
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The local Langlands correspondence for GLn

The local Langlands correspondence for GLn can be described a follows:

There is a bijection between

{ Irreducible smooth representations of GLn(F )}
LLC←→ { semi-simple n-dim. representations of WDF }.

σ → φσ (0.1)

The LLC has the property that for each (τ,W ) of GLt(F ), 1 ≤ t ≤ n− 1

L(s, σ × τ) = L(s, φσ ⊗ φτ )

ε(s, σ × τ, ψ) = ε(s, φσ ⊗ φτ , ψ)

and furthermore, there is a unique map (0.1) that satisfies this property.



Proofs

There is a unique bijection between σ → φσ,

{ Irreducible smooth representations of GLn(F )}
LLC←→ { semi-simple n-dim. representations of WDF }.

such that

L(s, σ × τ) = L(s, φσ ⊗ φτ )

ε(s, σ × τ, ψ) = ε(s, φσ ⊗ φτ , ψ)

Proof over local function fields was done in 1993

(Laumon-Rapoport-Stuhler).

Proof in characteristic 0 was completed in 2000 (Harris-Taylor,

Henniart), and recently Scholze (2013).
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Henniart), and recently Scholze (2013).



Beyond GLn

For other split reductive groups G(F ) (like GSp4(F ),SO2n+1(F )), the

local Langlands correspondence will no longer be a bijection and will only

be a surjective finite-to-one map:

{Irr. smooth reps. of G(F )} � {Homomorphisms φ : WDF →L G}

where LG is the “Langlands dual group” of G (the complex group

associated to the dual root datum).

The LLC has been established for

For GSp4 (Gan-Takeda in char 0, (-) in characteristic p > 2)

For classical groups (Arthur in char 0, Ganapathy - Varma in

sufficiently large characteristic))
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Deligne’s theory

Kazhdan’s theory enables us to compare representations of p-adic groups

over close local fields. A similar story on the Galois side is due to Deligne,

which we now review.

For an object X associated to the field F , we use the notation X ′ to

denote the corresponding object associated to F ′. Let

F̄ - a separable closure of F .

IF - the inertia group.

ImF - the m-th higher ramification subgroup with upper numbering.

Theorem (Deligne)

If F and F ′ are m-close, then

Gal(F̄ /F )/ImF
Delm−→ Gal(F̄ ′/F ′)/ImF ′ ,

is an isomorphism and is unique upto inner automorphisms.
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Properties of Delm: Local class field theory

The Deligne isomorphism is compatible with local class field theory.

Deligne proved that if the fields F and F ′ are m-close, then the following

diagram is commutative:

(Gal F̄ /F )/ImF )ab
Delm //

LCFT
��

(Gal(F̄ ′/F ′)/ImF ′)ab

LCFT
��

(F×/(1 + pmF ))̂
clm

// (F ′×/(1 + pmF ′))̂
In the above, we have used that if F and F ′ are m-close, then

F×/1 + pmF
∼= F ′×/1 + pmF ′ .



Properties of Delm: Representations of the Galois group

Now let φ : Gal(F̄ /F )→ GL(V ) be an irreducible n-dimensional

representation such that φ|ImF = 1. Then φ factors through Gal(F̄ /F )/ImF .

If the fields F and F ′ are m-close, then

Gal(F̄ /F )/ImF
Delm∼= Gal(F̄ ′/F ′)/ImF ′ .

Hence

φ′ = φ ◦Del−1
m : Gal(F̄ ′/F ′)/ImF ′ → GL(V ).

The isomorphism Delm induces a bijection

{Isomorphism classes of representations of Gal(F̄ /F ) trivial on ImF }

↔

{Isomorphism classes of representations of Gal(F̄ ′/F ′) trivial on ImF ′}.



Summary

Deligne’s result enables us to compare representations of Galois

groups over close local fields.

Kazdhan’s result and its variant enables us to compare

representations of p-adic groups over close local fields.

Given F ′ in characteristic p and m ≥ 1, there exists a local field of

characteristic 0 that is m-close to F .

Question: Is the Deligne-Kazhdan philosophy compatible with the local

Langlands correspondence?



Summary

Deligne’s result enables us to compare representations of Galois

groups over close local fields.

Kazdhan’s result and its variant enables us to compare

representations of p-adic groups over close local fields.

Given F ′ in characteristic p and m ≥ 1, there exists a local field of

characteristic 0 that is m-close to F .

Question: Is the Deligne-Kazhdan philosophy compatible with the local

Langlands correspondence?



The Deligne-Kazhdan theory and Local Langlands

Correspondence

Question: Assume that F and F ′ are two sufficiently close local fields,

and consider the following diagram:

{(σ, V ) of G | depth(σ) < m} LLC //

Kazhdan
��

{φ : WDF → LG | depth(φ) < m}

Deligne
��

{(σ′, V ′) of G′ | depth(σ′) < m} LLC // {φ′ : WDF ′ → LG | depth(φ′) < m}

depth(σ) < m =⇒ σKm+1 6= 0.

depth(φ) < m =⇒ φ|ImF = 1.

Is this diagram commutative? For GLn? For GSp4? For classical groups

like SO2n+1(F ), Sp2n(F ),SO2n(F )?
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The Deligne-Kazhdan theory and Local Langlands

Correspondence

Assume that F and F ′ are two sufficiently close local fields, and consider

the following diagram:

{(σ, V ) of G | depth(σ) < m} LLC //

Kazhdan
��

{φ : WDF → LG | depth(φ) < m}

Deligne
��

{(σ′, V ′) of G′ | depth(σ′) < m} LLC // {φ′ : WDF ′ → LG | depth(φ′) < m}

For GLn: (G) 2012, ABPS (2013)

For GSp4: (G) 2013

For split classical groups: Joint with Sandeep Varma (2015).



The Kazhdan isomorphism

Recall that G is a split, connected, reductive group over Z and Km is the

m-th filtration subgroup of the G(OF ). If F and F ′ are sufficiently close,

then H(G,Km) ∼= H(G′,K ′m). Some key ingredients in the proof of this

isomorphism:

(1) The Hecke algebra H(G(F ),Km) is finitely presented.

(2) The group G(F ) admits a Cartan decomposition, that is

G(OF )\G(F )/G(OF ) = W (G,T )\X∗(T )

where T is a maximal Z-split torus in G, X∗(T ) its cocharacter lattice

and W (G,T ) the Weyl group of T in G.

(3) We have obvious isomorphisms

G(OF )/Km
∼= G(OF /p

m
F ) ∼= G(OF ′/pmF ′) ∼= G(OF ′)/K ′m.

if the fields F and F ′ are m-close.
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then H(G,Km) ∼= H(G′,K ′m). Some key ingredients in the proof of this

isomorphism:

(1) The Hecke algebra H(G(F ),Km) is finitely presented.

(2) The group G(F ) admits a Cartan decomposition, that is

G(OF )\G(F )/G(OF ) = W (G,T )\X∗(T )

where T is a maximal Z-split torus in G, X∗(T ) its cocharacter lattice

and W (G,T ) the Weyl group of T in G.

(3) We have obvious isomorphisms

G(OF )/Km
∼= G(OF /p

m
F ) ∼= G(OF ′/pmF ′) ∼= G(OF ′)/K ′m.

if the fields F and F ′ are m-close.



Generalizing Kazhdan: Some questions

Some questions that come up in generalizing the Kazhdan isomorphism:

1 Given a split connected reductive group G0 over Z, one can work with

this group over an arbitrary field after base change.

More generally,

given a connected reductive group G over F , we need to understand

what it means to give a “corresponding” group G′ over F ′, where F ′

is suitably close to F .

2 Assuming this can be done, we need to understand what the

analogues of K = G0(OF ) and Km are.

3 With this in hand, we need to prove that K/Km
∼= K ′/K ′m. This will

involve studying the reduction of the underlying group schemes mod

pmF .

4 Generalize Kazhdan’s proof of the Hecke algebra isomorphism.
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Quasi-split groups

Question: Given a quasi-split connected reductive group G over F , we

need to understand what it means to give a “corresponding” group G′

over F ′, where F ′ is suitably close to F .

Answer: Let (R,∆) be a based root datum and let (G0, T0, B0, {uα}α∈∆)

be a pinned, split, connected, reductive Z-group with based root datum

(R,∆). Let Eqs(F,G0)m be the set of F -isomorphism classes of

quasi-split groups G that split (and become isomorphic to G0) over an

atmost m-ramified extension K of F (i.e. I(K/F )m = 1).

Eqs(F,G0)m is parametrized by H1(ΓF /I
m
F , Aut(R,∆)).

There is a bijection Eqs(F,G0)m → Eqs(F
′, G0)m, G→ G′,

provided F and F ′ are m-close.
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Generalizing Kazhdan isomorphism to quasi-split groups

On the three crucial ingredients that go into the proof of the Kazhdan

isomorphism for split reductive groups.

(1) The Hecke algebra H(G(F ),Km) is finitely presented.

- is true for any pair (G,K) where G is a connected reductive group over

F and K is a compact open subgroup of G(F ).

(2) The group G(F ) admits a Cartan decomposition, that is

G(OF )\G(F )/G(OF ) = W (G,T )\X∗(T ) (0.2)

where T is a maximal Z-split torus in G, X∗(T ) its cocharacter lattice and

W (G,T ) the Weyl group of T in G.

- For a pair (G,K) where G is a connected reductive group over F and K

a special maximal parahoric subgroup of G(F ), the Cartan decomposition

has been established in the work of Haines-Rostami.
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Generalizing Kazhdan isomorphism to quasi-split groups

(3) If the fields F and F ′ are m-close,

G(OF )/Km
∼= G(OF /p

m
F ) ∼= G(OF ′/pmF ′) ∼= G(OF ′)/K ′m

- We note that (3) is not obvious when G is not necessarily split. It has

been established for a pair (G,Pm) where G is a connected reductive

group over F and Pm is the m-th Moy-Prasad filtration subgroup of a

parahoric subgroup P of G(F ) (- , 2019).

With these ingredients in place for general G, we follow the strategy of

Kazhdan to prove that if the fields F and F ′ are sufficiently close, then

H(G(F ),Km) ∼= H(G′(F ′),K ′m)

where G is a connected reductive group over F , and

Km = Ker(K(OF )→ K(OF /p
m
F )) where K is as in (2) and K is the

underlying smooth affine OF -group scheme constructed by Bruhat-Tits.
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Analogues of K = G0(OF ), Km, I and Im

Let B(G,F ) denote the Bruhat-Tits building of G over F . This is a

simplicial complex with an action of G(F ) on it.

- Stabilizers of various facets in the building for this action give rise to

various compact open subgroups of G(F ).

- For example, when G is split, semisimple and simply connected, G(OF )

is the stabilizer of a certain nicely chosen vertex in the building, and the

Iwahori subgroup I is the stabilizer of an alcove (facet of maximal possible

dimension) in the building.

- In general, the subgroups of interest are finite index subgroups of

stabilizers of facets in the building of G(F ). These are called parahoric

subgroups. With F denoting a facet in the building, PF denotes the

corresponding parahoric subgroup.
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K/Km
∼= K ′/K ′m

Given a facet F in the building, Bruhat-Tits have constructed a smooth,

affine, OF -group scheme PF with generic fiber G and whose OF -points

PF (OF ) = PF .

To prove these isomorphisms, we

Understand how to compare certain facets of the building B(G,F )

and certain facets of the building B(G′, F ′). Let us denote this as

F → F ′.

Study the reduction PF ×OF
OF /p

m
F and prove that

PF ×OF
OF /p

m
F
∼= PF ′ ×OF ′ OF ′/pmF ′

provided the fields F and F ′ are sufficiently close.
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Thank you for your attention!


