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Block ciphers consist of:

A text space (which is also the ciphertext space): V = (F,)".
A set of keys: K(C V).

An (injective) map:

o: £ — Sym(V)
k — Ek

The permutations corresponding to the keys, called the encryption func-
tions, should appear uniformly spread through the set of all the permuta-
tions on V.

representation of the cipher in Sym(V)

N



The homomorphism

c: V
v
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The homomorphism

is a regular representation of V:
it is transitive, and all the stabilizers are trivial.

T = {o,|v € V} is the group of the translations. It is well known that
Nsym(v)(T) = V x GL(V) = AGL(V).

In our choice of the encryption functions, we would better STAY AWAY
from Nsym(v)(T). Here is a problematic example in which ¢ was used to
choose our encryption function.






Differential attack



Substitution-Permutation Networks
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Confusion and diffusion
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There are many regular subgroups of Sym(V), and many of them are
isomorphic to V.



There are many regular subgroups of Sym(V), and many of them are
isomorphic to V.

Lemma (John D. Dixon, Maximal abelian subgroups of the
symmetric group, Can. J. Math. XXIII, 3 (1971), 426-438.)

If G is a finite group any two regular representations of G in Sym(G) are
conjugate.

Proof.

Let 0 : G — Sym(G) be the right regular representation of the finite
group G, and let 7 : G — Sym(G) any regular representation of G. We
indicate by g7, g” the images of g € G under o, 7. Let 1 indicate the
identity of G.

Now we define a map ¢ : G — G by g¢p = 1g”7. The map ¢ is easily seen
to be a permutation of G, because 7 is a regular representation.

Any cycle of g7 has the form (x xg xg2 ... xg°®)~1), and conjugating it
by ¢, and remembering that 7 is an isomorphism, we obtain

(1x™ 1x"g7 1x7(g7)? ... 1x7(g7)°®)~1), which is a cycle of g7.



If T is the translation group on V, T = {0}, | b€ V,x — x + b}, then

a+ b= aoy
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If T is the translation group on V, T = {0}, | b€ V,x — x + b}, then

a+ b= aoy

analogously, if T8 = T, < Sym(V) is conjugated to T in Sym(V),

TO:{Tble V},

where 74 is the unique element in T, which maps 0 into b, then another

operation is defined on V as

aob=ar,

It is easy to prove that (V/, o) is an elementary abelian group, thus isomor-
phic to (V,+).
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Is it possible that the encryption functions are “less non-linear” with respect
to o than they are with respect to +7 In other words, should we "stay
away" also from the conjugates of AGL(V), when choosing our encryption
functions?




Differential attack revisited



A successful example on a toy SPN*

111 L 11 111 L 11 L1l

7| X3 x3 x3 x3 x3
[ A A

A

woftofodomom

» distinguishing attack based on classical differences fails

» distinguishing attack based on alternative differences succedes

*R. Civino, C. Blondeau, and M. Sala. Differential attacks: using alternative
operations. Designs, Codes and Cryptography. 2019, 87.2-3: 225-247



Weak-key subspace

W, E{k|keV,¥xEV xok=x+k}=TnNT,
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Weak-key subspace
W, Z{k|keV,¥xeV xok=x+k}=TnNT,

» consider T, < AGL(V)
{
1<d=dim(W,)<n-2

» assume d =n—2
d

> (x4 k)o((xoA)+ k) = A half of the times
> we can exhibit matrices that are linear with respect to o as well

*A. Caranti, F. Dalla Volta and M. Sala, 2006; M. Calderini and M. Sala, 2017



Is the case d = n — 2 special?

apparently, yes™!

*R. Aragona, R. Civino, N. Gavioli, C.M.S., Regular subgroups with large
intersection. Annali di Matematica Pura ed Applicata. 2019



Is the case d = n — 2 special?

apparently, yes™!

Theorem (R. Aragona, R. Civino, N. Gavioli, C.M.S.)
If To < Sym(V) is such that dim(W,) = n — 2, then T, < AGL(V)

» groups conjugated to T such that dim(W,) = n — 2 are called
second-maximal intersection subgroups (2MI)

» possible construction of cyphers that are secure with respect to
many different o -differential attacks

*R. Aragona, R. Civino, N. Gavioli, C.M.S., Regular subgroups with large
intersection. Annali di Matematica Pura ed Applicata. 2019
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Sketch of proof: we show first that if an involution ¢ € Sym(V) does not
fix any of the cosets of a subgroup W < V of index 4, and centralizes oy,
then ¢ € AGL(V). We then observe that T, is generated by TN T, and

two such commuting involutions.
But we were also able to write those involutions in matrix form. This

turned out to be crucial in the proof of our next result:
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Theorem (A,C,G,S)

Every Sylow 2-subgroup ¥ of AGL(V') contains exactly one 2MI subgroup
Ts which is normal in

AGL(V)

Theorem (A,C,G,S)

If T isa2MI subgroup, then there exists a Sylow 2-subgroup ¥ of
AGL(V) such that T =Ty <X
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Our next result is certainly the most technical of the whole paper. The
proof is based on two basic ideas, namely:

- the fact that the Sylow 2-subgroups of AGL(V) are all isomorphic to the
semidirect product of T with the group U, of the unitriangular matrices,
and therefore that they stabilize a flag in T;

- the canonical embedding of AGL(V) in GL(n + 1,2).

17/23



Theorem (A,C,G,S)

Let T be an elementary abelian regular subgroup of a Sylow 2-subgroup
Y of AGL(V). Then T is normal in X if and only if T € { T, Tx }

AGL(V)

>

/N,
T Ts
The proof consists essentially in showing that T is a 2MI subgroup.

Corollary

Every g € Nsym(v)(X) \ AGL(V) interchanges by conjugation T and Tx



Corollary
If ¥ is a Sylow 2-subgroup of AGL(V), then [Nsym(v)(X) : X] =2

Nsym(vy(X)

AGL(V

N



The fact that the Sylow 2-subgroups of Sym(V) are self-normalising was
already known to P. Hall. Similarly:

Corollary

If ¥ is a Sylow 2-subgroup of AGL(V), then NagL(v)(X) = X. In

particular,
n—1

[AGL(V):x] =[] (2" —1).

j=0
is the number of distinct Sylow 2-subgroups of AGL( V')



Next?

» 2MI subgroups = normalisers of Sylow 2-subgroups of AGL(V/)
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Next?

—

» 2MI subgroups = normalisers of Sylow 2-subgroups of AGL(V/)

» 3MI subgroups = normalisers of normalisers of Sylow 2-subgroups
of AGL(V)

» bring this back to crypto again
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The Big Problem







