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Block ciphers consist of:

A text space (which is also the ciphertext space): V
def
= (F2)n.

A set of keys: K(⊆ V ).

An (injective) map:

Φ : K → Sym (V )
k 7→ Ek

The permutations corresponding to the keys, called the encryption func-
tions, should appear uniformly spread through the set of all the permuta-
tions on V .

representation of the cipher in Sym(V )
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The homomorphism

σ : V → Sym (V )
v 7→ σv : x 7→ x + v

is a regular representation of V :
it is transitive, and all the stabilizers are trivial.

T = {σv |v ∈ V } is the group of the translations. It is well known that
NSym(V )(T ) ∼= V o GL(V ) = AGL(V ).

In our choice of the encryption functions, we would better STAY AWAY
from NSym(V )(T ). Here is a problematic example in which σ was used to
choose our encryption function.
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Differential attack
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Substitution-Permutation Networks
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Confusion and diffusion
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There are many regular subgroups of Sym(V ), and many of them are
isomorphic to V .

Lemma (John D. Dixon, Maximal abelian subgroups of the
symmetric group, Can. J. Math. XXIII, 3 (1971), 426-438.)

If G is a finite group any two regular representations of G in Sym(G ) are
conjugate.

Proof.

Let σ : G → Sym(G ) be the right regular representation of the finite
group G , and let τ : G → Sym(G ) any regular representation of G . We
indicate by gσ, gτ the images of g ∈ G under σ, τ . Let 1 indicate the
identity of G .
Now we define a map φ : G → G by gφ = 1gτ . The map φ is easily seen
to be a permutation of G , because τ is a regular representation.
Any cycle of gσ has the form (x xg xg2 ... xgo(g)−1), and conjugating it
by φ, and remembering that τ is an isomorphism, we obtain
(1xτ 1xτgτ 1xτ (gτ )2 ... 1xτ (gτ )o(g)−1), which is a cycle of gτ .
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If T is the translation group on V , T
def
= {σb | b ∈ V , x 7→ x + b}, then

a + b = aσb

analogously, if T g = T◦ < Sym(V ) is conjugated to T in Sym(V ),

T◦ = {τb | b ∈ V } ,

where τb is the unique element in T◦ which maps 0 into b, then another

operation is defined on V as

a ◦ b def

= aτb

It is easy to prove that (V , ◦) is an elementary abelian group, thus isomor-
phic to (V ,+).
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Is it possible that the encryption functions are “less non-linear” with respect
to ◦ than they are with respect to +? In other words, should we ”stay
away” also from the conjugates of AGL(V ), when choosing our encryption
functions?
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Differential attack revisited
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A successful example on a toy SPN*

I distinguishing attack based on classical differences fails

I distinguishing attack based on alternative differences succedes

*R. Civino, C. Blondeau, and M. Sala. Differential attacks: using alternative
operations. Designs, Codes and Cryptography. 2019, 87.2-3: 225-247
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Weak-key subspace

W◦
def
= {k | k ∈ V ,∀x ∈ V x ◦ k = x + k} ∼= T ∩ T◦

I consider T◦ < AGL(V )

↓ *

1 ≤ d
def
= dim(W◦) ≤ n − 2

I assume d = n − 2
↓

I (x + k) ◦ ((x ◦ ∆) + k) = ∆ half of the times
I we can exhibit matrices that are linear with respect to ◦ as well
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Is the case d = n − 2 special?

apparently, yes**!

Theorem (R. Aragona, R. Civino, N. Gavioli, C.M.S.)

If T◦ < Sym(V ) is such that dim(W◦) = n − 2, then T◦ < AGL(V )

I groups conjugated to T such that dim(W◦) = n − 2 are called
second-maximal intersection subgroups (2MI)

I possible construction of cyphers that are secure with respect to
many different ◦ -differential attacks

*R. Aragona, R. Civino, N. Gavioli, C.M.S., Regular subgroups with large
intersection. Annali di Matematica Pura ed Applicata. 2019
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Sketch of proof: we show first that if an involution φ ∈ Sym(V ) does not
fix any of the cosets of a subgroup W ≤ V of index 4, and centralizes σW ,
then φ ∈ AGL(V ). We then observe that T◦ is generated by T ∩ T◦ and
two such commuting involutions.
But we were also able to write those involutions in matrix form. This
turned out to be crucial in the proof of our next result:
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Theorem (A,C,G,S)

Every Sylow 2-subgroup Σ of AGL(V ) contains exactly one 2MI subgroup
TΣ which is normal in Σ

Theorem (A,C,G,S)

If T̄ is a 2MI subgroup, then there exists a Sylow 2-subgroup Σ of
AGL(V ) such that T̄ = TΣ E Σ
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Our next result is certainly the most technical of the whole paper. The
proof is based on two basic ideas, namely:
- the fact that the Sylow 2-subgroups of AGL(V ) are all isomorphic to the
semidirect product of T with the group Un of the unitriangular matrices,
and therefore that they stabilize a flag in T ;
- the canonical embedding of AGL(V ) in GL(n + 1, 2).
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Theorem (A,C,G,S)

Let T̄ be an elementary abelian regular subgroup of a Sylow 2-subgroup
Σ of AGL(V ). Then T̄ is normal in Σ if and only if T̄ ∈ {T ,TΣ }

The proof consists essentially in showing that T̄ is a 2MI subgroup.

Corollary

Every g ∈ NSym(V )(Σ) \ AGL(V ) interchanges by conjugation T and TΣ
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Corollary

If Σ is a Sylow 2-subgroup of AGL(V ), then [NSym(V )(Σ) : Σ] = 2

19 / 23



The fact that the Sylow 2-subgroups of Sym(V ) are self-normalising was
already known to P. Hall. Similarly:

Corollary

If Σ is a Sylow 2-subgroup of AGL(V ), then NAGL(V )(Σ) = Σ. In
particular,

[AGL(V ) : Σ] =
n−1∏
j=0

(
2n−j − 1

)
.

is the number of distinct Sylow 2-subgroups of AGL(V )
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Next?

I 2MI subgroups
 normalisers of Sylow 2-subgroups of AGL(V )

I 3MI subgroups
 normalisers of normalisers of Sylow 2-subgroups
of AGL(V )

I bring this back to crypto again
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The Big Problem
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