Semisimple (Q-algebras in algebraic combinatorics

Allen Herman (Regina)
Group Ring Day, ICTS Bangalore

October 21, 2019



|.1 Coherent Algebras and Association Schemes

Definition 1 (D. Higman 1987).

A coherent algebra (CA) is a subalgebra CB of M,(C) defined by a
special basis B, which is a collection of non-overlapping
01-matrices that

(1) is a closed set under the transpose,

(2) sums to J, the n x n all 1's matrix, and

(3) contains a subset A of diagonal matrices summing /, the
identity matrix.

The standard basis B of a CA in M,(C) is precisely the set of
adjacency matrices of a coherent configuration (CC) of order n and
rank r = |B].

B' =B — CB is semisimple.

When A = {/}, B is the set of adjacency matrices of an
association scheme (AS).
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|.2 Example: Basic matrix of an AS

An AS or CC can be illustrated by its basic matrix. Here we give
the basic matrix of an AS with standard basis B = {by, by, ..., b7 }:

M=

S5

Il
NN O RAEDWNRO
OO NNC A BDNWOR
O A DPOONNRHEOWN
U DPDOONNORRNW
WNO O N~NR,ROOO DN
NWOa~N~NO RO O MDD
AR WNROOON~N G O
AR NWOROON ~ OO
NN OoOWNOO AN
N~NOoORNWOOOMADMOOOD
HOoO OO MDD WNOGO N N
oo O RM~ADNWO OGN~
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|.3 Example: Basic matrix of a CC of order 10 and |A]| =2

(01 2 3 2 3 2 3 2 37
103 23 2 3232
4 56 787 87 87
J 5 47 6 78 7 8 7 8
Z’b: 4 587 6 78787
,:ol 547 87 6 7 8 7 8
4 587 87 67 87
54 7 87 87 6 7 8
4 587 878767
L5 4 7 87 87 8 7 6

A = {bg, bs}, 6(bo) = d(bs) =1

Diagonal block valencies: 6(b1) =1, §(b7) = 4, 6(bg) = 3;
Off diagonal block valencies:

row valencies: §,(by) = 6,(b3) =4, 6,(bs) = 6,(bs) =1
column valencies: d.(b2) = 0c(b3) =1, dc(bs) = 6c(bs) = 4.
The order n =) row valencies = > column valencies.
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|.4 Example: A finite group is a thin AS

If G={go=-¢e,81,.--,8n—-1} is a finite group of order n.
Let b; be the left regular matrix of g; for each g; € G.
Then {bg = In, b1,...,bp—1} is an AS with every 6(b;) = 1.

For example, here is a (possible) basic matrix for Q:

01234567
10325476
, 32016754
S b = 231076 45
—l 54760123
456 7 1032
76 453201
|6 75 4 2 3 1 0|
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|.5 Examples of ASs generated by graphs

(1) The complete graph AS K, = {ln, Jn» — I} is the unique rank 2
AS of order n.

(2) A strongly regular graph (SRG) with n vertices produces a rank
3 symmetric AS {/,, A, A} of order n.

(3) A distance regular graph (DRG) on n vertices with distance
matrices Ag, A1, Ao, ..., Ag produces a symmetric AS
{Ao, A1,...,Aq} of order n and rank d + 1.

(4) A doubly regular tournament (DRT) of order n = 4u + 3
produces an asymmetric rank 3 AS {/,,A, AT }.
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|.6 Adjacency algebras of ASs are subrings of group rings!

Proof: Suppose S = {bg, b1,...,b,_1} is the set of adjacency
matrices of an AS of order n.

By the valency condition, each b; # by is a doubly stochastic
01-matrix, hence a sum of (non-overlapping) permutation matrices
(in fact, derangements) that sum to J. [Schneider, 1959].

Therefore, ZS is isomorphic to a subring of ZG, where G is a
subgroup of S, generated by a collection of derangements whose
n X n permutation matrices sum to J. [J
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|.7 The pseudo-inverse condition for ASs

Let B = {by = Ip, b1,...,b,—1} be the standard basis of an AS.
Let {\ji} be the structure constants relative to B, so

Vb,’, bj S B, bibj = Z)\ijkbk-
k

Then Vb; € B, 3lb; € B such that ;o # 0. (For an AS b; = b.' )
If we write this b; as bj» for all i, then we have

Xjo #0 <= j =1, and Ajxjo = Ajj=0 > 0. (1)

Definition 2.
Condition (1) is the pseudo-inverse condition on the basis B.

A table algebra (or fusion rule algebra) is an associative algebra
with involution * that has a x-invariant basis B containing 1 and
satisfying the pseudo-inverse condition.
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|.8 Classifications of CCs and ASs

e [Ziv-Av 2013] CCs are completely classified up to order 13.

e [Hanaki-Miyamoto 2005] ASs are considered classified for orders
< 30, 32, 33, and 34. (Order 31 is only obstructed by classification
of DRTs of order 31, which should be available soon.)

e [Zieschang 1996] There are no noncommutative rank 5 ASs.

e [H 2019] There are no noncommutative rank 7 ASs with 6
asymmetric elements. They must have at least 2. Are there some
with 47
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1.9 AS Feasibility Problem for TAs

Question 1: Feasibility Problem
Which TAs are represented by ASs?

e All multiplicities must be positive integers, elements must satisfy
graph eigenvalue restrictions, ...

Question 2

(i) [Brouwer] Is there a symmetric AS of rank 3 and order 65 with
b2 = 32by + 15b; + 16b,7

(This is the smallest SRG that is not known to exist. The missing
Moore graph (57-regular on 3250 vertices) is another famous one.)

(ii) [H 2019] Is there a noncommutative AS of rank 7 that has four
x-asymmetric elements?

v
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[.10 And then comes Terwilliger algebras...

Definition 3.

Let S={Ap=1,A1,...,A_1} be set of adjacency matrices for a
CC (or AS) of rank r and order n.

Fix an x € X. For each A;, let E* = E*(x) be the diagonal
idempotent matrix whose yy-entry is 1 if (A;),, = 1, and otherwise
0. If E*(x) ={E*(x):i=0,1,...,r — 1} is this dual idempotent
basis then QE*(x) is an r-dimensional semisimple commutative
Q-algebra.

The rational Terwilliger (or subconstituent) algebra at vertex x is

T, = Q(S U E*(x)).

Remarks: T, is a semisimple subalgebra of a coherent algebra (its
coherent closure), but it is usually not coherent.
T, depends on x. There is one T, up to isomorphism for each orbit of

Aut(S).
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|.11 T-algebras for SRGs and DRGs, importance

e If G is a finite group then T,(G) ~ M,(Q).

o T(Kn) = M(Q)® Q
e [Yamazaki-Tomiyama 1994| For a symmetric rank 3 AS (SRG),
C & Tx(S) = M3(C) & Mo(C)™ ) g Cmx),

e T,(S) has been extensively studied for DRGs - this has led to
deep connections with

-orthogonal polynomials and their related quantum groups,

-spin models in knot theory and conformal field theory, and

-the recent solution to Bannai’s finiteness conjecture for ASs that
are both metric and cometric.
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|.12 T-algebras of asymmetric ASs? The integral T-alg?

For ASs that are not DRGs, not much is known about T,!

Question 3: Rank 3A T-alg conjecture [H]

Suppose S is an asymmetric AS of rank 3 and order 4u+ 3, u > 0,
(i.e. a DRT). Then Vx,

e dim T, is odd and < 8u + 9;

o Tx(S) ~ M3(C) & My(C)™¥) g Cm(x)

| A\

Question 4: [H]

Except for finite groups, are CCs distinguished combinatorially by
their rational /integral Ty-algebras (as a list of algebras up to
isomorphism)?

\

Question 5: [Terwilliger 1991] (Conjecture 10a)
Is Z(S U E*) equal to the set of all integral matrices in T,?
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[I.1 Let's get integral!

Let B = {bg, b1,...,b,—1} be a CC, AS, or the standard basis of
an integral TA.

e B2 C NB, so ZB will be an integral ring.
e RB := R®yz ZB is an R-algebra for any ring R.

We can now consider representation theory over any ring or field,
like R, Q, Z, Fpn, Qp.

e If F is a field, FB will be semisimple when...(a condition
reminiscent of Maschke's theorem)...holds.

e 7B is a Z-order in QB, so we can consider units, maximal
orders, zeta functions, etc.
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[1.2 Representation-theoretic questions

Question 6: Cyclotomic Eigenvalue Conjecture [Norton 1978]

Suppose B is the standard basis of a CC. Let x € Irr(CB).
Then Vb; € B, x(b;) is an element of a cyclotomic extension of Q.

e CEC does not hold for regular graphs of order > 9, nor TAs of
order > 13.

e CEC would follow for CCs if it is shown for ASs, it was originally
asked for commutative ASs.

e CEC holds for finite groups and ASs of rank 2 or 3 (easy!).

e [Hanaki-Uno 2006, Komatsu 2008] Number fields have been
shown to exist that make it possible for CEC to fail for ASs of
prime order.
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[1.3 Rational representation theory

QB is semisimple. Wedderburn decomp.? Schur indices m(x)?

Theorem 4 (H-Rahnamai Barghi 2011).

(i) If x € Irr(CB) and Q(x) C R, then m(x) < 2.

(ii) The collection of Brauer equivalence classes of K-central
simple algebras that occur as simple components of QB for some
AS (or TA) B form a subgroup of Br(K). (We call this the AS (or
TA) Schur Subgroup of Br(K)).

Is there a good bound for m() in terms of parameters of B?

Theorem 5 (H 2019).

If B has r — 2 symmetric elements, then m(x) = 1 for every
x € Irr(CB).
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[1.4 Modular representation theory

Suppose F is a finite field of characteristic p for which FB is not
semisimple, and let (K, R, F) be a splitting p-modular system.

e [Hanaki 2002] If o(B) = p then FB is a local ring.

Question 8: [Hanaki 2009]

Let S be an AS.

(a) Blocks of FS depend on p and the choice of modular system
(not just on p). Is there a defect theory for blocks of FS?

(b) FS need not be a symmetric algebra, but its Cartan matrix is
symmetric. What associative algebras can be blocks of an FS?
(c) When does FS have finite representation type?
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[1.5 Units of ZB?

Let B be an AS or the standard basis of an integral TA.

Theorem 6 (H-Singh 2017).

Central torsion units of ZB are trivial
(i.e. u= +b; for some b; € B with 6(b;) =1).

| A

Question 9:
If B is a commutative TA, find the rank of the torsion-free part of
U(ZB) in terms of parameters of B.

Normalized units have valency 6(u) = 1. Is there a partial
augmentation condition for normalized torsion units of ZB?

A\
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[1.6 The Zeta function of ZB?

Recall that the zeta function of a module M is the function
Cm(s) = >, ans™", where a, is the number of Z-submodules of M
with index n for all n > 1.

Theorem 7.

The zeta functions of the order ZB have been computed for the
following ASs:

e [Solomon 1977] B = C,, a cyclic group of prime order.

* [Reiner 1980] B = Cp.

e [Hironaka 1981/1985] B = C, x Cq, p # q distinct primes.

e [Takegahara 1987] B = C, x Cp.

e [Hanaki-Hirasaka 2015] B = K.

e [Hanaki-Hirasaka 2015] o(B) = p a prime.

e [H-Hirasaka-Oh 2017] B = C x D, where the orders ZC and ZD
are “locally coprime”.
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[11.1 Let's do algebra: subschemes...

Suppose S is the standard basis of an AS (or integral TA).

A sub-AS is a closed subset T of S, satisfying T* = T, T?> C NT,
and dimCT = |T|.

The order of the sub-AS is o(T) = >, 6(t).

Theorem 8 (Zieschang 1996).

Suppose T is a sub-AS of T.

(i) o(T) divides o(S).

(ii) ST is partitioned into left T-cosets (sT)"

(using what is analogous to support in group rings)
(iii) S* is partitioned into T-T-double cosets (TsT)*.
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[11.1 Aside: closed subsets and primitivity

Let S be the standard basis of an AS or integral TA.

S is primitive if it contains no closed subsets other than {by = I}
and itself.

The only primitive finite groups are the C,'s where p is prime.
[Hanaki-Uno 2006] Any AS of prime order p will be primitive (and
commutative and of rank dividing p — 1).

[H-Muzychuk-Xu 2017,2018] Every noncommutative TA of rank 5
is primitive. There are primitive noncommutative TAs of rank 6.

Question 10: [Muzychuk]

Is there a primitive noncommutative AS?
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[11.2 Let's do algebra: quotients...homomorphisms...

Let S be an AS or the standard basis of an integral TA.
Theorem 9 (Zieschang 1996, Blau 2009).

Let T be any closed subset of S.
Then ST = {o(T) " Y(TsT)* : s € S} is the set of standard
matrices of an AS of order o(S)/o(T).

Definition 10.

An AS (or TA) homomorphism ¢ : S — U is determined by a
composition which (up to positive scalars) takes
S—+»S/T—-V<—=U,

for some closed subset T of S (T = ker ¢)

and some closed subset V of U.

AS homomorphic images of finite groups G produce double coset
algebras C[G J/H]. These are known as Schurian ASs.
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[11.3 Let's do algebra: ...extensions...

Suppose B and C are two ASs (or TA). The following
constructions give new ASs (or TAs):

e (direct product) B x C = {b; ® ¢;}
e (wreath product) Bwr C = {b; ® ¢, BT @ ¢j : (j # 0)}
e (semidirect product) B x G for (a group Hom) G — Aut(B)

e (wedge/circle product) [Arad-Fisman 1992, Blau 2015]
BvC=BU(C—{a})

e (wedge-direct product) [Xu 2019] BX, C ~ ker¢ & C
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[11.4 Let's do algebra: ...fusions!

A fusion of a TA B is a TA D obtained from the characteristic
functions of a x-compatible partition of B, with one of the subsets
of the partition being {bo}.

e Fusions of thin ASs (group rings) are precisely unital Schur rings.

Remark: The “x-compatibility condition” on the partition making
the fusion cannot be dropped. For example, in the group algebra
CS3, the set

D={(1),(1,2,3)+(1,2),(1,3,2) + (1,3),(2,3)}

generates a 4-dimensional subalgebra CD which is not semisimple!
This is an example of what we call a semi-fusion.
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[11.5 The Three Types of ASs

Remark: ASs can be divided into three types:

(i) Schurian ASs = AS homomorphic images of finite groups

(ii) Fusions of Schurian ASs = unital and non-unital Schur rings
(iii) ASs with intransitive automorphism groups. These are
homogeneous fusions of CCs with no intermediate AS fusion that
are not included in (i) and (ii).

Remark: The CEC holds for (i) but is open for (ii) and (iii).

Question 11:

(i) Does CEC hold for Schur rings that are fusions of non-Abelian
finite groups?

(ii) Can an element of a Schur ring basis have noncyclotomic
eigenvalues?
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The End

Thank Youl
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