Computing Wedderburn decomposition using the concept of Shoda pairs

Sugandha Maheshwary GARC 2019, ICTS, Bangalore

1 Introduction

1.1 Shoda pairs

Theorem 1.1 (Shoda's irreducibilty criterion) Let χ be a linear character defined on a subgroup H of G. Then the induced character χ^G is irreducible, if, and only if, for every $g \in G \setminus H$, there is an element $h \in H \cap H^g$ such that $\chi(ghg^{-1}) \neq \chi(h)$.

Definition 1.2 (Shoda pair-rephrasing Shoda's criterion in group theoretic terms) $A \ pair (H, K) \ of \ subgroups \ of \ G \ satisfying \ (i)-(iii) \ is \ called \ a \ Shoda \ pair \ of \ G.$

- (i) $K \leq H$,
- (ii) H/K is cyclic,
- (iii) if $g \in G$ and $[H, g] \cap H \subseteq K$, then $g \in H$.

Theorem 1.3 (PCI associated to a Shoda pair) Let (H, K) be a Shoda pair and let χ is a linear character of a subgroup H of G with kernel K, then

$$e_{\mathbb{Q}}(\chi) = \alpha e(G, H, K),$$

for some $\alpha \in \mathbb{Q}$ (known), where e(G, H, K) is the sum of distinct G-conjugates of $\varepsilon(H, K)$ given by

$$\varepsilon(H,K) := \begin{cases} \hat{H}, & H = K; \\ \prod (\hat{K} - \hat{L}), & \text{otherwise,} \end{cases}$$

where L runs over the normal subgroups of H which are minimal over the normal subgroups of H containing K properly.

Remark 1.4 If χ is the trivial character of G, then $e_{\mathbb{Q}}(\chi) = \hat{G}$.

Furthermore, $\alpha = 1$, if the distinct G-conjugates of $\varepsilon(H, K)$ are mutually orthogonal.

This led to the definition of strong Shoda pair.

Definition 1.5 (Strong Shoda pair) A strong Shoda pair of G is a pair (H, K) of subgroups of G with the theoremetry that

- (i) $K \subseteq H \subseteq N_G(K)$;
- (ii) H/K is cyclic and a maximal abelian subgroup of $N_G(K)/K$;
- (iii) the distinct G-conjugates of $\varepsilon(H,K)$ are mutually orthogonal.

Remark 1.6 A strong Shoda pair is indeed a Shoda pair.

Theorem 1.7 [Simple component associated to strong Shoda pair]Let (H, K) be a strong Shoda pair and k = [H : K], $N = N_G(K)$, n = [G : N], x a generator of H/K and $\phi : N/H \mapsto N/K$ a left inverse of the projection $N/K \mapsto N/H$. Then,

$$\mathbb{Q}Ge(G, H, K) \cong M_n(\mathbb{Q}(\zeta_k) *_{\tau}^{\sigma} N/H),$$

where the action σ and the twisting τ are given by $\zeta_k^{\sigma(a)} = \zeta_k^i$, if $x^{\phi(a)} = x^i$; $\tau(a,b) = \zeta_k^j$, if $\phi(ab)^{-1}\phi(a)\phi(b) = x^j$, for $a,b \in N/H$ and integers i and j.

- **Remark 1.8 (i)** The action σ in above theorem is always faithful due to the fact that H/K is a maximal abelian subgroup of N/K.
- (ii) In case the twisting τ is trivial, then $\mathbb{Q}(\zeta_k) *_{\tau}^{\sigma} N/H \cong M_m(F)$, where m = [N : H] and F is the fixed subfield of $\mathbb{Q}(\zeta_k)$ under the action of N/H. Consequently, we have in this case, $\mathbb{Q}Ge(G, H, K) \cong M_{mn}(F)$.

A strong Shoda pair (H, K) of G with H normal in G has even easier description.

Definition 1.9 A pair (H, K) of subgroups of G is called an extremely strong Shoda pair, if it satisfies

- (i) $K \subseteq H \subseteq G$,
- (ii) H/K is cyclic and a maximal abelian subgroup of $N_G(K)/K$.

An extremely strong Shoda pair is indeed a strong Shoda pair and hence e(G, H, K) is a primitive central idempotent of $\mathbb{Q}G$.

2 Shoda pairs (SP) do exist!

Example 2.1
$$G = C_2 \times C_2 = \langle a, b \rangle$$
.

all possible pairs of subgroups (possible candidates for SP):

$$\{(G,G),(G,\langle a\rangle),(G,\langle b\rangle),(G,\langle ab\rangle),(G,\langle 1\rangle)\}$$

SP

$$\{(G,G),(G,\langle a\rangle),(G,\langle b\rangle),(G,\langle ab\rangle),(G,\langle 1\rangle)\}.$$

Example 2.2 $G = C_4 = \langle a \rangle$.

pairs of subgroups (possible candidates for SP):

$$\{(G,G),(G,\langle a^2\rangle),(G,\langle a^4\rangle),(G,\langle 1\rangle),(\langle a^2\rangle,\langle 1\rangle)\}$$

SP

$$\{(G,G),(G,\langle a^2\rangle),(G,\langle a^4\rangle),(G,\langle 1\rangle),(\langle a^2\rangle,\langle 1\rangle)\}$$

Observations

- 1. (G,G) is always an ESSP and hence a SP. What is the simple component associated to (G,G)?
- 2. (H, H) is an ESSP if and only if H = G.
- 3. If H = G, then (G, K) is an ESSP of G if and only if $K \subseteq G$ and G/K is cyclic.
- 4. If G is abelian then all ESSPs are of the form (G, K) such that G/K is cyclic. In fact calculating simple component for each of these pairs yield Perlis Walker theorem.

Example 2.3
$$G = S_3 = D_6 := \langle a, b | a^3 = b^2 = 1, a^b = a^{-1} \rangle$$
.

Direct check as above yields the following set of ESSPs

$$\{(G,G),(G,\langle a\rangle),(\langle a\rangle,\langle 1\rangle)\}$$

Example 2.4
$$G = D_8 := \langle a, b | a^4 = b^2 = 1, a^b = a^{-1} \rangle$$
.

Repeating above process yields the following set of ESSPs

$$\{(G,G),(G,\langle a^2,ab\rangle),(G,\langle a^2,b\rangle),(G,\langle a\rangle),(\langle a^2,ab\rangle,\langle ab\rangle),(\langle a^2,ab\rangle,\langle a^3b\rangle),(\langle a^2,b\rangle,\langle b\rangle),(\langle a^2,b\rangle,\langle a^2b\rangle),(\langle a\rangle,\langle a\rangle)\}\}$$

Count the number of ESSPs obtained for each group. Do you see a problem?

3 Some obvious questions

Question 3.1 Is their a refined method to find the set of ESSPs of G.

Question 3.2 Each ESSP yields a simple component. How to choose a subset of ESSPs, so as to obtain exact Wedderburn decomposition?

Question 3.3 Are these all the Shoda pairs/strong Shoda pairs? If yes, for what groups. If not, how do we find the remaing?

4 Answers to the questions above

Algorithm to find a set S_G of ESSPs of G, such that

$$\mathbb{Q}G \cong \oplus A_{(H,K)},$$

where $A_{(H,K)}$ is simple component given by Theorem 1.7

Step 1 Find \mathcal{N} : the set of all the distinct normal subgroups of G.

Step 2 For $N \in \mathcal{N}$, let A_N be a normal subgroup of G containing N such that A_N/N is an abelian normal subgroup of maximal order in G/N [The choice of A_N

is not unique but choice does not affect the output, fix one].

Step 3 For a fixed A_N , set

 \mathcal{D}_N : the set of all subgroups D of A_N containing N such that $\mathrm{core}_G(D) = N$, A_N/D is cyclic and is a maximal abelian subgroup of $N_G(D)/D$.

 \mathcal{T}_N : a set of representatives of \mathcal{D}_N under the equivalence relation defined by conjugacy of subgroups in G.

 $S_N: \{(A_N, D) \mid D \in \mathcal{T}_N\}.$

$$S_G := \bigcup_{N \in \mathcal{N}} S_N$$
.

Apparently, it is a big algorithm, as it is for an arbitrary finite group. There are quick reductions for applications. For instance,

• If $N \in \mathcal{N}$ is such that G/N is abelian, then

$$S_N = \begin{cases} \{(G, N)\}, & \text{if } G/N \text{ is cyclic;} \\ \emptyset, & \text{otherwise.} \end{cases}$$
 (1)

• If G/N is non abelian and A_N/N is cyclic, then

$$S_N = \begin{cases} \{(A_N, N)\}, & \text{if } A_N/N \text{ is a maximal abelian subgroup of } G/N; \\ \emptyset, & \text{otherwise.} \end{cases}$$

- If $N \in \mathcal{N}$ is such that the centre of G/N is not cyclic, then $\mathcal{S}_N = \emptyset$.
- If $\mathcal{M} \subseteq \mathcal{N}$ is such that

$$\sum_{N \in \mathcal{M}} \sum_{(A_N, D) \in \mathcal{S}_N} dim(A_N, D) = |G|,$$

then $S_N = \emptyset$ for all $N \in \mathcal{N} \setminus \mathcal{M}$.

Groups for which the set of ESSPs suffices

Theorem 4.1 (i) If G is a normally monomial group, then $S_G := \bigcup_{N \in \mathcal{N}} S_N$ is a complete irredundant set of Shoda pairs/strong Shoda pairs of G.

- (ii) $\{e(G, A_N, D) | (A_N, D) \in \mathcal{S}_N, N \in \mathcal{N}\}\$ is the complete set of primitive central idempotents of $\mathbb{Q}G$, if, and only if, G is normally monomial.
- (iii) A finite group G is normally monomial if, and only if,

$$|G| = \sum_{N \in \mathcal{N}} \sum_{D \in \mathcal{D}_N} [G : A_N] \varphi([A_N : D]).$$
 (2)

But, what if a group is not normally monomial?

Monomial groups, strongly and normally monomial groups.

Recall that a group G is *monomial*, if all its complex irreducible characters are monomial.

Theorem 4.2 (Shoda pairs and monomial groups) A finite group G is monomial if, and only if, every primitive central idempotent of $\mathbb{Q}G$ is of the form $\alpha e(G, H, K)$, for $\alpha \in \mathbb{Q}$ and a Shoda pair (H, K) of G.

A group G is normally monomial, if all its complex irreducible characters are normally monomial, i.e., induced from a linear character of a normal subgroup of G.

Theorem 4.3 (Extremely strong Shoda pairs and normally monomial groups) A finite group G is normally monomial if, and only if, every primitive central idempotent of $\mathbb{Q}G$ is of the form e(G, H, K), for an extremely strong Shoda pair (H, K) of G.

Therefore one can construct all primitive central idempotents of $\mathbb{Q}G$ from extremely strong Shoda pairs of G.

And, a group G is *strongly monomial*, if each primitive central idempotent of $\mathbb{Q}G$ is of the form e(G, H, K), for a strong Shoda pair (H, K) of G.

5 Some associated GAP (wedderga) commands

G-a group, (H,K) a pair of subgroups of \$G\$, QG-rational group algebra of \$G\$.
IsShodaPair(G,H,K);
IsStrongShodaPair(G,H,K);
IsExtremelyStrongShodaPair(G,H,K);
IsMonomial(G);
IsStronglyMonomial(G);

```
IsNormallyMonomial(G);
StrongShodaPairs(G);
ExtremelyStrongShodaPairs(G);
# ShodaPairs(G); No
ShodaPairsAndIdempotents(QG);
IsCompleteSetOfOrthogonalIdempotents(R,list); #R a unital ring.
PrimitiveCentralIdempotentsByStrongSP(QG);
# There is also PrimitiveCentralIdempotentsByCharacterTable(QG);
PrimitiveCentralIdempotentsByESSP(QG);
Idempotent_eGsum(QG,G,H)[2];
CrossedProduct( <R>, <G>, act, twist );
WedderburnDecomposition(FG);
```

6 Exercises

- 1. (c.f. Exercises of GA tutorial) Compute for some groups of small order a complete set of primitive central idempotents and a complete set of primitive idempotents of $\mathbb{Q}G$. Do it, using above process and for groups considered above, i.e., $C_4, C_2 \times C_2, S_3, D_4$ and also write the Wedderburn decomposition of their rational group algebras.
- 2. Abelian-by-supersolvable groups are strongly monomial. Using GAP or otherwise, find a strongly monomial group which is not abelian by supersolvable.
- 3. Find a group of least order, which is not strongly monomial.
- 4. Metabelian groups are normally monomial. Using GAP or otherwise, find a normally monomial group which is not metabelian.
- 5. Find a group of least order, which is not normally monomial.
- 6. Find a group of least order, which is strongly monomial but not normally monomial.
- 7. Find a group of least order, which is monomial but not strongly monomial.