
TORSION UNITS IN INTEGRAL GROUP RINGS

ÁNGEL DEL RÍO

Abstract. We revise some problems on the study of finite subgroups of the group of units of
integral group rings of finite groups and some techniques to attack them.

The study of the group of units U(ZG) of the integral group ring of a finite group G was started
by Higman in [Hig40] (see also [San81]) and has been an active subject of research since. Two basics
references for this topic are the book of Sehgal [Seh93] and the two volumes book by Jespers and
the author [JdR15a, JdR15b]. The aim of this note is to introduce the reader to the investigation of
the finite subgroups of U(ZG) and, in particular, of the torsion units in ZG. For a more advanced
and updated treatment of the topic see [MdR19].

1. Basic notation

All throughout G is a finite group, denoted multiplicatively, and Z(G) denotes the center of G.
The order of a set X is denoted |X|. We also use |g| to denote the order of a torsion group element
g, i.e. g has finite order.

Every ring R is assumed to have an identity and its center and group of units are denoted
Z(R) and U(R), respectively. If n is a positive integer then Mn(R) denotes the ring of n × n
matrices with entries in R and GLn(R) = U(Mn(R)), the group of units of Mn(R). If M is
an R-module then EndR(M) denotes the ring of endomorphisms of M and AutR(M) denotes
the group of automorphisms of M . If M is free of rank n then there is a natural isomorphism
EndR(M) → Mn(R) associating every homomorphism with its expression in a fixed basis, which
restricts to a group isomorphism AutR(M) → GLn(R). We will use these isomorphisms freely to
identify endomorphisms and matrices.

The group ring of G with coefficients in R is denoted RG. It contains R as a subring an its group
of units contains G as a subgroup which is also a basis of RG as a left R-module. Moreover the
elements of R and G commute. The group ring is characterized by the following property, which
we refer to as the Universal Property of Group Rings: For every ring homomorphism f : R → S
and every group homomorphism φ : G→ U(S) satisfying f(r)φ(g) = φ(g)f(r) for every r ∈ R and
every g ∈ G there is a unique ring homomorphism f ′ extending f and φ. In particular, if S is a ring
containing R as subring then every group homomorphism φ : G → U(S) with image commuting
with the elements of R extends uniquely to a ring homomorphism RG → S, which we will also
denote φ.

We will abuse slightly the notation so that any time that we write r =
∑
g∈G rgg ∈ RG we are

implicitly assuming that each rg belongs to R. The support of r is

Supp(r) = {g ∈ G : rg 6= 0}.
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2. The Berman-Higman Theorem

We start with a result with many consequences on the finite subgroups of U(ZG).

Theorem 2.1 (Berman-Higman Theorem). [Ber55, Hig40] If u =
∑
g∈G ugg is a torsion unit of

ZG then either u = ±1 or u1 = 0.

Proof. Consider the regular representation, i.e. the group homomorphism G → EndC(CG) associ-
ating g ∈ G with the map ρ(g) : x 7→ gx. Representing ρg in the basis G, we deduce that if n = |G|
then the trace of ρ(1) is n and if g ∈ G \ {1}, then the trace of ρ(g) is 0. Identifying EndC(CG) and
Mn(C) we have a group homomorphism ρ : G→ U(Mn(C)) = GLn(C). By the Universal Property
of Group Rings, ρ extends to a C-algebra homomorphism ρ : CG→Mn(G).

Suppose that u =
∑
g∈G ugg is a torsion unit of ZG, say of order m. By Problem 2a, ρ(u)

is diagonalizable and |tr(ρ(u))| ≤ n. As the trace map tr : Mn(C) → C is C-linear, we have
nu1 =

∑
g∈G ugtr(ρ(g)) = tr(ρ(u)). Thus n|u1| = |tr(ρ(u))| ≤ n. As u1 is an integer either u1 = 0

or u1 = ±1. Moreover, by the second part of Problem 2a, in the second case ρ(u) is a scalar matrix,
i.e. ρ(g) = aI for some complex root of unity a. But nu1 = na, so that ρ(u) = u1I = ±I. As ρ is
an injective map we deduce that u = ±1, as desired. �

The most obvious torsion units of ZG are the elements of the form ±g with g ∈ G. They are
called trivial units of ZG.

As a consequence of the Berman-Higman Theorem (Theorem 2.1), one can describe all the torsion
central units.

Corollary 2.2. The torsion central units of ZG are the trivial units ±g with g ∈ Z(G). In
particular, if G is abelian then every finite subgroup of U(ZG) is contained in ±G.

Proof. Let u be a torsion central unit of ZG and let g ∈ Supp(u). Then v = ug−1 is a torsion unit
with 1 ∈ Supp(v). By Theorem 2.1, v = ±1, and so u = ±g. �

The proof of Theorem 2.1 uses one of the main tools in the study of group rings, namely Rep-
resentation Theory. Let R be a commutative ring and let M be a left RG-module. The map
associating g ∈ G to the R-endomorphism of M given by m 7→ gm is a group homomorphism
G 7→ AutR(M). Conversely, if M is an R-module then, by the Universal Property of Group Rings,
every group homomorphism G → AutR(M) extends to a ring homomorphism RG → EndR(M)
and this induces a structure of RG-module on M . Thus we can identify RG-modules with group
homomorphism G→ EndR(M) with M an R-module.

An R-representation of G of degree k is a group homomorphism ρ : G → GLk(R). Our iden-
tification of EndR(Rk) and Mk(R) allows to identify ρ with the RG-module whose underlying
R-module is Rk and gm = ρ(g)m for g ∈ G and m ∈ Rk. The composition of ρ with the trace map
tr : Mk(R) → R is called the character afforded by ρ, or by the underlying RG-module. Observe
that both ρ and the character afforded by ρ are R-linear maps defined not only on G but also on
RG.

For example, the trivial map G→ U(R), g 7→ 1 is a character of degree 1 and its linear span to
RG is called the augmentation map:

augG : RG → R∑
g∈G

rgg 7→
∑
g∈G

rg.
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The kernel Aug(RG) of augG is called the augmentation ideal of RG. As the augmentation map is
a ring homomorphism it restricts to a group homomorphism

augG : U(RG)→ U(R).

The kernel of this group homomorphism is denoted V (RG), i.e.

V (RG) = {u ∈ U(RG) : augG(u) = 1}1.

The elements of V (RG) are usually called normalized units. If R is commutative then U(RG) =
U(R) × V (RG). In particular, U(ZG) = ±V (ZG) and hence the study U(ZG) and V (ZG) are
equivalent.

More generally, if N is a normal subgroup of G then the natural map G→ G/N ⊆ U(R(G/N))
extends linearly to a ring homomorphism

augG,N : RG → R(G/N)∑
g∈G

rgg 7→
∑
g∈G

rggN.

We set AugN (RG) = ker(augG,N ). Furthermore, V (RG,N) denotes the kernel of the restriction of
augG,N to U(RG), considered as the homomorphism between the group of units of RG and R(G/N)
(see Problem 3).

One of the main questions on group rings is the so called Isomorphism Problem:

The Isomorphism Problem for group rings over a ring R: (ISO-R):

Does RG ∼= RH imply G ∼= H?

(ISO) is an abbreviation of (ISO-Z) and called the Isomorphism Problem. We say that (ISO)
holds for a group G if and only if ZG is not isomorphic to ZH for every group H non-isomorphic
to G.

Observe that RG ∼= R⊗Z ZG and therefore if ZG ∼= ZH then RG ∼= RH for every ring R. Thus
a negative solution for (ISO) is a negative solution for (ISO-R) for every ring R.

It is easy to find negative solutions for the Isomorphism Problem for group rings over the complex
numbers using only abelian groups (see Problem 6). However this is not the case for R = Z.

Corollary 2.3. The Isomorphism Problem has a positive solution for finite abelian groups.

Proof. Let G and H be finite groups and suppose that G is abelian and suppose that ZG and ZH
are isomorphic. Then necessarily H is abelian (why?). By Problem 7 there is an isomorphism
f : ZG→ ZH which maps V (ZG) onto V (ZH). Moreover, by Corollary 2.2, the set of torsion units
of V (ZG) and V (ZH) areG andH, respectively. Then f restricts to an isomorphism f : G→ H. �

Another consequence of the Berman-Higman Theorem is the following:

Corollary 2.4. Every finite subgroup of V (ZG) is linearly independent over Q (equivalently, over
Z).

1Some authors denote V (RG) as U1(RG)
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Proof. Let H = {u1, . . . , un} be a finite subgroup of V (ZG) and suppose that

c1u1 + · · ·+ cnun = 0

with ci ∈ Z. Then

c1 + c2u2u
−1
1 + · · ·+ cnunu

−1
1 = 0

and each uiu
−1
1 , with i = 2, . . . , n is a torsion element of V (ZG) \ {1}. By the Berman-Higman

Theorem (Theorem 2.1), 1 6∈ Supp(uiu
−1
1 ) for every i 6= 1 and therefore, comparing the coefficients

of 1 in both sides of the previous equality, we deduce that c1 = 0. This shows that each ci = 0. �

An obvious consequence of Corollary 2.4 is that if H is a finite subgroup of V (ZG) then the
subring Z[H] of ZG H is isomorphic to the group ring ZH. Clearly H is a basis of Q[H] over Q.
Actually, it is also a basis of Z[H] over Z (see Problem 8). Using this one can prove that (ISO)
holds for G if and only if all the subgroup of V (ZG) with the same order as G are isomorphic .

Using the same technique as for the proof of the Berman-Higman Theorem one can obtain the
following:

Lemma 2.5. Let K be a field extension of Q and let e =
∑
g∈G egg ∈ KG with e2 = e 6∈ {0, 1}.

Then e1 is a rational number in the interval (0, 1).

Proof. Let ρ be the regular representation of G and χ the character afforded by ρ. By Problem 2b,
ρ(e) is diagonalizable and all the eigenvalues of ρ(e) are 0 or 1 and χ(e) is the multiplicity of 1 as

eigenvalue of ρ(e). As e 6∈ {0, 1} and ρ is injective, χ(e) ∈ {1, . . . , |G| − 1} and e1 = χ(e)
|G| . �

Corollary 2.6. The order of every finite subgroup of V (ZG) divides |G|.

Proof. Let ρ be the regular representation and let χ be the character afforded by ρ.

Let H be a finite subgroup of V (ZG) and let e = Ĥ =
∑

h∈H h

|H| . Then e is an idempotent of

QG and hence r = χ(e), where r is the rank of ρ(e). On the other hand χ(h) = |G|ch where ch
is the coefficient of 1 in h. By the Berman-Higman Theorem, ch = 0 unless h = 1. Therefore

r = χ(e) = |G|
|H| , is an integer and thus |H| divides |G|. �

3. Problems on finite subgroups of U(ZG)

In this section we collect some of the main problems on the finite groups of units of ZG. The re-
sults of the previous sections suggests that there is a strong connection between the finite subgroups
H of V (ZG) and the subgroups of G. For example, the elements of H are linearly independent
over Q (Corollary 2.4) and the order of H divides the order of G (Corollary 2.6). Moreover, if G is
abelian then the torsion elements of V (ZG) are just the elements of G (Corollary 2.2). We cannot
expect that the latter generalizes to non-abelian groups because conjugates of G in U(ZG) are not
included in G. So the most that we can expect is that the finite subgroups of V (ZG) are conjugate
to subgroups of G or at least isomorphic to subgroups of G. Already Higman knew that V (ZS3)
has torsion units which are not conjugate in the units of ZS3 to any element of G. However, Hughes
and Pearson proved that every torsion element of V (ZS3) is conjugate in the units of QS3 to an
element of S3 (see Problem 10).

Two subgroups or elements of U(ZG) are said to be rationally conjugate if they are conjugate
within the units of QG.

The results of Hughes and Pearson on the torsion elements of V (ZS3) suggested the following
problems which were proposed as conjecture by Hans Zassenhaus [Zas74].
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The Zassenhaus Problems2: Given a finite group G:

(ZP1) Is every torsion element of V (ZG) rationally conjugate to an element of G?
(ZP2) Is every finite subgroup of V (ZG), with the same order as G, rationally conjugate to G?
(ZP3) Is every finite subgroup of V (ZG) rationally conjugate to a subgroup of G?

Clearly a positive solution for (ZP3) implies a positive solution for (ZP1) and (ZP2). Moreover
a positive solution for (ZP2) implies a positive solution for the Isomorphisms Problem, or more
precisely if (ZP2) has a positive solution for a finite group G and ZG ∼= ZH for another group H
then G ∼= H.

The following proposition shows that in the Zassenhaus Problems one can replace Q by any field
of characteristic 0. For its proof we need some notation.

If F is a field, A is a finite dimensional F -algebra and a ∈ A then the norm of a over F is
NrA/F (a) = det(ρ(a)) where ρ : A→ EndF (A) is the regular representation of A, i.e. ρ(a)(b) = ab,
for a, b ∈ A. Observe that if B is a basis of A over F then NrA/F (a) = det(ρB(a)), where ρB(a) is
the matrix representation of ρ(a) in the basis B. Moreover, if E is a field containing F as a subfield
then B is also a basis of E ⊗F A over E and hence, considering A embedded in E ⊗F A via the
map a 7→ 1⊗ a, we have NrB/E(a) = det(ρG(a)) = NrA/F (a) for every a ∈ A.

Proposition 3.1. Let E/F be an extension of infinite fields, let A be a finite dimensional F -algebra
and let B = E⊗F A. Let M and N be finite subsets of A which are conjugate within B. Then they
are also conjugate within A.

Proof. Fix an F -basis {b1, . . . , bd} of A. Let u be a unit of B such that Mu = N . For every
m ∈ M let nm = u−1mu. So the system of equations Xnm = mX has a solution in the units
of B. Expressing this in terms of the F -basis b1, . . . , bd of A we obtain a system of homogeneous
linear equations in d unknowns, with coefficients in F which has a solution (e1, . . . , ed) in E such
that e1b1 + · · · + enbd is a unit of B. Let v1, . . . , vk be an F -basis of the set of solutions and
consider the polynomial f(X1, . . . , Xk) = NrA/F (X1v1 + · · ·+Xkvk) = NrB/E(X1v1 + · · ·+Xkvk).
By elementary linear algebra v1, . . . , vk is also an E-basis of the set of solutions in E. Thus
e1b1 + · · · + ekbk = x1v1 + · · · + xkvk for some x1, . . . , xk ∈ E and hence f(x1, . . . , xk) 6= 0. This
implies that f is not the zero polynomial. Then f(y1, . . . , yk) 6= 0 for some y1, . . . , yk ∈ F , since F
is infinite. Therefore v = y1v1 + · · · + ykvk is an element of A with NrA/F (v) 6= 0 and vnm = mv
for each m ∈ M . The first implies that v ∈ U(A) and the second that Mv = N . Thus M and N
are conjugate within A. �

Applying Proposition 3.1 to A = QG and F a field containing Q, and having in mind that
FG ∼= F ⊗Q G, we get the following:

Corollary 3.2. Let H be a finite subgroup of V (ZG) and let F be a field containing Q then H is
rationally conjugate to a subgroup of G if and only if it is conjugate in FG to a subgroup of G.

Corollary 3.3. Let H1 and H2 be subgroups of U(ZG). Then H1 and H2 are rationally conjugate
if and only if there is an isomorphism φ : H1 → H2 such that χ(h) = χ(φ(h)) for every h ∈ H1 and
every χ ∈ Irr(G).

2These problems have been known for a long time as the Zassenhaus Conjectures although counterexamples for

the last two are known since the beginning of the 1990s. Since we also know now counterexamples for the first one,
I prefer to call them problems now.
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Proof. The necessary condition is obvious. Suppose that φ : H1 → H2 is an isomorphism satisfying
the condition. For every χ ∈ Irr(G) fix a representation ρχ affording χ. Then Φ = (ρχ)χ∈Irr :
CG →

∏
χ∈Irr(G)Mχ(1)(C) is an isomorphism of C-algebras. Moreover ρχ|H1

and ρχ|H2
◦ φ are

representations of H1 affording the same character, namely χH1 = χH2 ◦φ. Thus ρχ|H1 and ρχ|H2 ◦φ
are equivalent as C-representations, i.e. there is Uχ ∈ Mχ(1)(C) such that ρχφ(h) = U−1ρχ(h)U

for every h ∈ H1. Hence u = Φ((Uχ)χ∈Irr(G)) is a unit of CG such that u
−1

hu = φ(h) for every

h ∈ H1. Thus u−1H1u = φ(H1) = H2, i.e. H1 and H2 are conjugate in CG. Thus H1 and H2 are
conjugate in QG, by Corollary 3.2. �

The set of orders of the torsion elements of a group Γ is call the spectrum of Γ. If (ZP1) has a
positive solution then G and V (ZG) have the same spectra. This suggests the following problem.

The Spectrum Problem: (SpP) Do G and V (ZG) have the same spectra?

A weaker version of the Spectrum Problem is the Prime Graph Question which was proposed
by Kimmerle. The prime graph of Γ is the undirected graph whose vertices are the prime integers
p with p = |g| for some g ∈ Γ and the edges are the pairs {p, q} of different primes p and q with
pq = |g| for some g ∈ Γ, i.e. with pq in the spectrum of G.

The Prime Graph Question: (PGQ) Do G and V (ZG) have the same prime graph?

By the Cohn-Livingstone Theorem (Problem 12), the spectra of G and V (ZG) contain the same
prime powers and in particular the prime graphs of G and V (ZG) have the same vertices. However
whether (ZP1) has a positive solution for units of prime power order is still unknown.

Another weaker version of the Zassenhaus Problem (ZP1) was proposed by Kimmerle.

The Kimmerle Problem: (KP) Is every torsion element of V (ZG) conjugate to an element of G
in QH for some finite group H containing G as subgroup?

A final question related with these problems is the Automorphism Problem which tries to predicts
how are the automorphisms of ZG which preserves the augmentation. They form a subgroup of the
group Aut(ZG) of all autormorphisms of ZG, which we denote by Aut∗(ZG). Every automorphism
of G extends uniquely to an element of Aut∗(ZG). We can identify the latter with the group
Aut(G) of automorphisms of G so we see Aut(G) as a subgroup of Aut∗(ZG). Also, the inner
automorphisms of ZG belong to Aut∗(ZG). More generally, the inner automorphisms of QG leaving
ZG invariant form another normal subgroup of Aut∗(ZG). We denote this group InnQG(ZG). Then
Aut(G)InnQG(ZG) is a subgroup of Aut∗(ZG).

The Automorphism Problem (AUT) Is Aut∗(ZG) = Aut(G)InnQG(ZG)?

Proposition 3.4. (ZP2) has a positive solution for G if and only if (ISO) and (AUT) have a
positive solution for G.

Proof. Suppose that (ZP2) has a positive solution for G. Let H be a subgroup of V (ZG) with the
same cardinality as G. By assumption H is rationally conjugate to G and hence G ∼= H. Thus
(ISO) has a positive solution for G. Let now α ∈ Aut∗(ZG). Then H = α(G) is a subgroup of
V (ZG) with the same order as G. By assumption, there is a unit u of QG such that H = u−1Gu.
Let β be the inner automorphism of QG defined by u. Then β(ZG) = ZH ⊆ ZG and therefore
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β ∈ InnQG(ZG). Moreover, β−1α ∈ Aut(G). Thus α ∈ Aut(G)InnQG(ZG). We conclude that
(AUT) has a positive solution for G.

Conversely, suppose that (ISO) and (AUT) have a positive solution for G. Let H be a subgroup
of V (ZG) with the same order as G. By the Universal Property of Group Rings there is a ring
homomorphism β : ZH → ZG whose restriction to H is the identity of H. As G and H have the
same order, β is an isomorphism and hence there is an isomorphism α : G → H. Applying again
the Universal Property of Group Rings there is a ring isomorphism ZG→ ZH extending α, which
we also denote α. Then βα ∈ Aut∗(ZG) and by assumption βα = δγ for some γ ∈ Aut(G) and
δ ∈ InnQG(ZG). Then H = β(H) = δγα−1(H) = δ(G). Therefore H is rationally conjugate to G.
This proves that (ZP2) has a positive solution for G. �

We list here a few relevant results on them. See [MdR19] for a more extensive list of results.

Negative results:

• Roggenmkamp and Scott constructed metabelian3 negative solutions to (AUT) [Rog91] and
Klingler discovered a simpler one [Kli91]. This provides metabelian negative solutions to
(ZP2) and (ZP3).
• Hertweck constructed a solvable negative solution to (ISO) [Her01]. Of course this is an-

other negative solution for (ZP2) but it is more complicated than the counterexamples of
Roggenkamp and Scott and Klingler.
• Recently Eisele and Margolis found a metabelian negative solution to (ZP1) [EM18].
• Dade found two metabelian groups G and H such that FG ∼= FH for every field F [Dad71].

Positive solutions for (ZP3): (ZP3) has a positive solution (and hence all the problems
mentioned in this Section) for the following groups.

• nilpotent groups [Wei91].
• split metacyclic groups AoX with A and X cyclic of coprime order [Val94]. The proof of

this result is based in a previous proof in [PMS84] of a positive solution for (ZP1) for this
class of groups.

Positive solutions for (ZP1): Besides the groups in the previous list positive solutions for
(ZP1) has been proved for the following families of groups:

• All the groups of order at most 143 [BHK+17].
• groups with a normal Sylow subgroup with abelian complement [Her06].
• cyclic-by-abelian groups [CMdR13].
• PSL(2, q) for q either a Fermat or Mersenne prime or q ∈ {8, 9, 11, 13, 16, 19, 23, 25, 32}

[LP89, Her06, Her07, Her08b, KK17, BM17, MdRS19].

Positive solutions for (ISO): Withcomb proved (ISO) for metabelian groups, i.e. groups
whose derived subgroup is abelian [Whi68].

Results for (SpP). Hertweck proved that the Spectrum Problem has a positive solution for
solvable groups [Her08a]. No negative solution is known.

Results for (PGQ): Kimmerle and Konovalov have proved that the Prime Graph Question
has a positive solution for a group if and only if it has a positive solution for every almost simple
epimorphic image of G [KK17]. Many positive results for simple and almost simple groups have
been obtained in the latter years.

3A group is said to be metabelian if its derived subgroup is abelian, or equivalent if it has an abelian normal
subgroup with abelian quotient.
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Results for (KP). We know that the Kimmerle Problem has a positive solution for torsion units
in V (ZG,N) with N a nilpotent normal subgroup of G [MdR18]. Observe that the counterexample
to the Zassenhaus Conjecture by Eisele and Margolis belongs to V (ZG,A) for A an abelian normal
subgroup of G. No negative solution is known.

(ZP3)

(ZP1) (ZP2) = (ISO)+(AUT))

(AUT)(KP)

(SpP)

(ISO)

(PGQ)

Figure 1. Logical implications between problems on finite subgroups of V (ZG).
Red means that some negative solution is known.

4. Additive commutators and partial augmentations

Let R be a ring. Then [R,R] denotes the additive subgroup of R generated by the Lie brackets

[x, y] = xy − yx, (x, y ∈ R).

If S is a subring of the center of R then R×R→ R, (x, y) 7→ [x, y] is an S-bilinear map. Therefore
[R,R] is an S-submodule of R. If moreover, R = SX, i.e. R is generated by X as S-module then
[R,R] is generated by {[x, y] : x, y ∈ X} as S-module. In particular, if R is commutative then
[RG,RG] is generated by {[g, h] : g, h ∈ G} as R-module.

Given a =
∑
g∈G agg ∈ RG, with ag ∈ R for every g ∈ G and a subset X of G we set

εX(a) =
∑
x∈X

ax.

This notation will be used mostly with X a conjugacy class of G and with the sets of the form

G[n] = {g ∈ G : |g| = n}.

If g ∈ G then gG denotes the conjugacy class of g in G and the partial augmentation of a at g
is εgG(a). When the group G is clear from the context we simplify the notation by writing εg(a)
rather than εgG(a). The Berman-Higman Theorem states that if u is a non-trivial torsion element
of V (ZG) then ε1(u) = 0.

Lemma 4.1. If R is a commutative ring and G is a group then

[RG,RG] =
∑
g,h∈G

R[g, h] = {a ∈ RG : εC(a) = 0, for each conjugacy class C of G}.
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Proof. That the first two sets are equal was already mentioned at the beginning of this section. That
the second is included in the third follows because εC is R-linear and εC([g, h]) for every g, h ∈ G.
To finish the proof observe that if a belong to the third set then a is a sum of elements of the form
x =

∑
t∈T xtg

t for g ∈ G, T a right transversal of CG(g) in G and xt ∈ R with
∑
t∈T xt = 0. For

such x we have x =
∑
t∈T xtg

t − (
∑
t∈T xt)g =

∑
t∈T xt(g

t − g) =
∑
t∈T xt[t

−1g, t] ∈ [RG,RG].
Thus a is a sum of elements in [RG,RG], so that a ∈ [RG,RG]. �

Using Lemma 4.1 it easily follows that if T is a set of representatives of the conjugacy classes of
G then

[RG,RG] =
⊕

t∈T,g∈tG\{t}

R(g − t).

Therefore RG/[RG,RG] is a free R-module with rank the number of conjugacy classes of G. More-
over, if S is a subring of R then

[SG, SG] = SG ∩ [RG,RG].

Lemma 4.2. The following conditions are equivalent for a finite subgroup H of V (ZG).

(1) H is rationally conjugate to a subgroup of G;
(2) there is a homomorphism φ : H → G such that for every h ∈ H and every g ∈ G \ φ(h)G,

εg(h) = 0.
(3) there is a homomorphism φ : H → G such that εg(h) = εg(φ(h)) for every h ∈ H and

g ∈ G.

Proof. (1) implies (2). Suppose that u−1Hu ≤ G with u ∈ U(QG) and consider the group homo-
morphism φ : H → G, h 7→ u−1hu. Then

h− φ(h) = [hu, u−1] ∈ ZG ∩ [QG,QG] = [ZG,ZG].

Thus, if g ∈ G \ φ(h)G then
0 = εg(h− φ(h)) = εg(h).

(2) implies (3). Suppose that φ : H → G is a group homomorphism satisfying the condition in
(2). Then

εg(h) =

{
aug(h) = 1, if g ∈ φ(h)G;

0, if g 6∈ φ(h)G.

Thus εg(h) = εg(φ(h)) for every h ∈ H and g ∈ G, i.e. φ satisfies (3).
(3) implies (1) Suppose that φ : H → G satisfies condition (3). Therefore, εg(φ(h) − h) = 0

for each g ∈ G and hence φ(h) − h ∈ [ZG,ZG], by Lemma 4.1. Moreover, φ is injective, because
if φ(h) = 1 then ε1(h) = 1. Thus h = 1 by the Berman-Higman Theorem. Therefore φ is an
isomorphism from H to φ(H) and the latter is a subgroup of G. If χ ∈ Irr(G) then χ([ZG,ZG]) = 0
and hence χ(h) = χ(φ(h)). By Corollary 3.3, H and φ(H) are conjugate in QG. �

Lemma 4.3. Let v ∈ V (ZG), let p be a prime integer and let x, y ∈ G such that εg(v) = 0 for
every g ∈ G \ xG and εg(v

p) = 0 for every g ∈ G \ yG. Then xp and y are conjugate in G.

Proof. Indeed, as εg(v) = εg(x) and εg(v
p) = εg(y) for each g ∈ G and aug(v) = aug(vp) = 1, it

follows from Lemma 4.1 that v ≡ x mod [ZG,ZG] and vp ≡ y mod [ZG,ZG]. Then xp ≡ vp ≡ y
mod ([ZG,ZG] + pZG), by Problem 11. Therefore taking images in FpG we deduce that xp ≡ y
mod [FpG,FpG]. Therefore, by Lemma 4.1, we have εg(x

p) ≡ εg(y) mod p for every g ∈ G. In
particular 1 = εxp(xp) ≡ εxp(y) mod p. As εxp(y) = 0 if xp and y are not conjugate in G we
deduce that xp and y are conjugate in G, as desired. �
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Theorem 4.4 (Marciniak-Ritter-Sehgal-Weiss [MRSW87]). Let u be an element of order n of
V (ZG). Then the following are equivalent:

(1) u is conjugate in QG to an element of G.
(2) For every i = 1, . . . , n− 1, there is exactly one conjugacy class C of G with εC(ui) 6= 0.
(3) εC(ui) ≥ 0, for every i = 1, . . . , n− 1 and every conjugacy class C of G.

Proof. (1) ⇒ (2) is obvious and (2) ⇔ (3) follows easily from the fact that the sum of the partial
augmentations εC(u) of u is aug(u) = 1.

Suppose that (2) holds. For every i = 1, . . . , n let gi ∈ G such that εgG(ui) = 0 for every

g ∈ G \ gGi . By the Berman-Higman Theorem gi = 1 if and only if ui = 1 if and only if i = n.
We now prove by induction on the number of primes in the factorization of i that gi is conjugate

to gi1 for every i = 1, . . . , n. This is clear if the number of primes is 0, i.e. if i = 1. So suppose that

i = pj with p prime. By the induction hypothesis gj and gj1 are conjugate in G. Let v = uj . By the

previous paragraph εg(v) = 0 for every g ∈ G \ gGj = G \ (gj1)G and εg(v
p) = 0 for every g ∈ G \ gGi .

This implies that gi is conjugate to gpj in G, by Lemma 4.3. Thus gi is conjugate to gi1, as desired.
Thus, if 1 ≤ i ≤ n then gn1 = 1 if and only gi = 1 if and only i = n, i.e. g1 has order n and hence

ui → gi1 defines a group isomorphism 〈u〉 → 〈g1〉 with εg(u
i) = 0 for each g ∈ G \ (gi1)G. Then 〈u〉

is rationally conjugate to a subgroup of G, by Theorem 4.2, and hence u is rationally conjugate to
an element of G, as desired. �

5. Double action

In this section we rewrite the Zassenhaus Problems in terms of isomorphisms between certain
modules.

In the remainder G and H are finite groups and R is a commutative ring. Fix a group homo-
morphism

α : H → V (RG).

Then we define a left R(H × G)-module R[α] as follows: As an R-module R[α] = RG and the
multiplication by elements of H ×G is given by the following formula:

(5.1) (h, g)v = α(h)vg−1, (h ∈ H, g ∈ G, v ∈ RG).

We consider G as a subgroup of H × G via the projection on the second component. Let
α, β : H → U(RG) be two group homomorphism. Then R[α] and R[β] are isomorphic as RG-
modules and every isomorphism between them as RG-module is given as follows

ρu : RG → RG

x 7→ ux

for some u ∈ U(RG). Moreover ρu is an isomorphism of R(H × G)-modules if and only if β(h) =
uα(h)u−1 for every h ∈ H. This proves the following:

Proposition 5.1. Let α, β : H → U(RG) be group homomorphisms. Then R[α] ∼= R[β] if and only
if there is u ∈ U(RG) such that β(h) = uα(h)u−1 for every h ∈ H.

The connection of Proposition 5.1 with the Zassenhaus Problems is now clear:

Corollary 5.2. The following are equivalent for a group homomorphism α : H → V (RG):

(1) There is u ∈ U(RG) and a group homomorphism σ : H → G such that α(h) = u−1σ(h)u
for every h ∈ H.

(2) α(H) is conjugate within U(RG) to a subgroup of G
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(3) R[α] ∼= R[σ] for some group homomorphism σ : H → G.

Furthermore, if R is a field of characteristic zero then the above conditions are equivalent to the
following:

(4) The character afforded by R[α] is equal to the character afforded by R[σ] for some group
homomorphism σ : H → G.

Corollary 5.2 suggests to calculate the character χα afforded by the module R[α]. Using G as a
basis of R[α] as R-module one easily obtains the following

(5.2) χα(h, g) = |CG(g)|εg(α(h)).

We need the following proposition whose proof is beyond the scope of these notes.

Proposition 5.3 (Hertweck). Let u be a torsion element of V (ZG) and let g ∈ G. If |g| does not
divide |u| then εg(u) = 0.

Let Cl(G) denote the set of conjugacy classes of G. If C ∈ Cl(G) and g ∈ C then, by definition,
the order of C is the order of g and for every integer k, Ck denotes the conjugacy class of C in G
containing gk. Let Clm(G) be the set of conjugacy classes of G of order dividing m.

Lemma 5.4. Let u be a torsion element of order n in V (ZG), let k be a positive integer coprime
with n and let C be a conjugacy class in G. Then

(5.3) εC(u) =
∑

D∈Cl(G)

Dk=C

εD(u).

Proof. Let C ∈ Cl(G) and let m denote the order of C. If m - n then the order of every D ∈ Cl(G)
with Dk = C does not divide n and hence, by Lemma 5.3, we have εC

(
uk
)

= εD (u) = 0 for every
such D. Then (5.3) holds.

Suppose otherwise that m | n and let l be an integer such that kl ≡ 1 mod n. Then Cl is the
unique element D of Cl(G) with Dk = C. Thus we have to prove that εC

(
uk
)

= εCl (u). Let
α : 〈u〉 → V (ZG) denote the inclusion map. The representation ρ of 〈u〉 × G associated to the
module Z[α] has degree |G| and affords the character χ = χα. Let g ∈ C. By assumption the order
of (uk, g) is n. Let ζn denote a complex primitive n-th root of unity. Then ρ(uk, g) is conjugate to

diag(ζi1n , . . . , ζ
i|G|
n ) for some integers i1, . . . , i|G| and ρ(u, gl) is conjugate to diag(ζli1n , . . . , ζ

li|G|
n ). As

gcd(l, n) = 1, there is an automorphism σ of Q(ζn) given by σ(ζn) = ζln. Moreover, χ(uk, g) ∈ Z,

by (5.2). Then χ(uk, g) = σ(χ(uk, g)) =
∑|G|
j=1 ζ

lij
n = χ(u, gl). Applying again (5.2) and CG(g) =

CG(gl) we have εC
(
uk
)

= εg
(
uk
)

= εgl (u) = εCl (u), as desired. �

Using Lemma 5.4 and Theorem 4.4 one can obtain the following simplified version of the latter.

Corollary 5.5. Let u be an element of V (ZG) of order n. Then the following are equivalent.

(1) u is rationally conjugate to an element of G.
(2) For every d | n, there is gd ∈ G with εg(u

d) = 0 for every g ∈ G \ gGd .
(3) εg(u

d) ≥ 0, for every d | n and g ∈ G.

Proof. By Theorem 4.4, it is enough to show that if (3) holds then εC(ui) ≥ 0 for every positive
integer i and every C ∈ Cl(G). Indeed, suppose that (3) holds, let i be a positive integer and
let d = gcd(i, n) and k = i

d . Then n
d = |ud| and gcd(k, nd ) = 1. Then, by Lemma 5.4, we have

εC
(
ui
)

=
∑
D∈Cl(G)

Dk=C

εD
(
ud
)
≥ 0. �
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We finish this section with an application of Corollary 5.5 to (KP) which provides an specific
“bigger” group in the statement of (KP).

Theorem 5.6. [MdR18] Let G be a finite group and consider G as subgroup of SG via the homo-
morphism G → SG mapping g ∈ G to the permutation of G given by x 7→ gx. The following are
equivalent for a finite group G.

(1) (KP) has a positive solution for G.
(2) Every torsion element of V (ZG) is conjugate in QSG to an element of G.
(3) For every element of order n in V (ZG) and every positive integer m 6= n we have εG[m](u) =

0.

Proof. (2) implies (1) is clear.
(1) implies (3). Assume that (KP) has a positive solution for G and let u be an element of

order n in V (ZG). By assumption, G is contained as a subgroup in a finite group H such that u is
conjugate to an element of G in QH. Since the support of u clearly consists only of elements in G
and G[m] = G ∩H[m], we have εG[m](u) = εH[m](u) = 0 for any integer m 6= n.

(3) implies (2). Suppose that (3) holds. Let u be an element of order n in V (ZG). The cycle
type of an element of order k in G viewed as an element of SG is given as |G|/k cycles of length
k. So two elements of G of the same order are conjugate in SG. In particular all conjugacy classes
of elements of the same order in G fuse into one conjugacy class in SG. Then, applying (3) to any
power uk of u we deduce that there exists exactly one conjugacy class C, consisting of elements of
the same order as uk, in SG such that εC(uk) = 1 and εC′(u

k) = 0 for any other conjugacy class
C ′. Thus u is conjugate in QSG to an element h of SG, by Theorem 5.5. If h is not conjugate in
SG to any element of G then εg(u) = 0 for every g ∈ G and hence 1 = aug(u) = 0, a contradiction.
Thus h is conjugate in SG to an element g of G and hence u is conjugate in QSG to g. �

6. The HeLP Method

Let ζn denote a complex primitive n-th root of unity and set F = Q(ζn). Then every automor-
phism of F is given by σi(ζn) = ζin with i an integer coprime with n. Consider the Vandermonde
matrix

V = V (1, ζn, ζ
2
n, . . . , ζ

n−1
n ) =


1 1 1 . . . 1
1 ζn ζ2

n . . . ζn−1
n

1 ζ2
n ζ22

n . . . ζ
2(n−1)
n

. . . . . . . . . . . . . . .

1 ζ
(n−1)
n ζ

2(n−1)
n . . . ζ

(n−1)2

n


and its complex conjugate

V = V (1, ζn, ζn
2
, . . . , ζn

n−1
) = V (1, ζ−1

n , ζ−2
n , . . . , ζ1−n

n ).

The (i, j)-th entry of V V is
n−1∑
k=0

ζk(i−j)
n =

{
n, if i = j;

0, otherwise.
.

Therefore

V −1 =
1

n
V .
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Let U ∈Mk(C) with Un = 1. Then the eigenvalues of U are of the form ζin with i = 0, 1, . . . , n−1.
Let µi denote the multiplicity of ζin as eigenvalue of U , i.e. U is conjugate in Mk(C) to a diagonal
matrix where each ζin appears µi times in the diagonal. We denote this diagonal matrix as

diag(1× µ0, ζn × µ1, . . . , ζ
n−1
n × µn−1).

Then U j is conjugate in Mk(C) to diag(1× µi, ζjn × µ1, . . . , ζ
j(n−1)
n × µn−1). Therefore

(6.4) tr(U j) = µ0 + µ1ζ
j
n + µ2ζ

2j
n + · · ·+ µn−1ζ

(n−1)j
n ,

for all j, or equivalently 
tr(U0)
tr(U)
tr(U2)

...
tr(Un−1)

 = V


µ0

µ1

µ2

...
µn−1

 .

Thus 
µ0

µ1

µ2

...
µn−1

 =
1

n
V


tr(U0)
tr(U)
tr(U2)

...
tr(Un−1)

 ,

or equivalently

(6.5) µi =
1

n

n−1∑
j=0

tr(U j)ζ−ijn .

If d = gcd(j, n) then σ j
d
∈ Gal(Q(ζdn)/Q) and ζ−ijn = σ j

d
(ζ−idn ). Combining this with (6.4), we

deduce that tr(U j) = σ j
d
(tr(Ud)) and hence, grouping the summands in the right side of (6.5) with

the same greatest common divisor with n, we have

(6.6) µi =
1

n

∑
d|n

TrQ(ζdn)/Q(tr(Ud)ζ−idn ).

Suppose now that u is an element of order n of U(CG) and ρ is a representation of G affording
the character χ. Applying (6.6) to U = ρ(u) we deduce that the multiplicity of ζin as an eigenvalue
of ρ(u) is

µ(ζin, u, χ) :=
1

n

∑
d|n

TrQ(ζdn)/Q(χ(ud)ζ−idn ).

We are going to use that χ is constant on conjugacy classes to consider χ as a map defined on
Cl(G), i.e. we denote χ(C) = χ(g) whenever C = gG with g ∈ G. By the linearity of χ, for every
a ∈ CG we have

χ(a) =
∑

C∈Cl(G)

εC(a)χ(C).

Therefore

(6.7) µ(ζin, u, χ) =
1

n

∑
d|n

∑
C∈Cl(G)

εC(ud)TrQ(ζdn)/Q(χ(C)ζ−idn ).
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Observe that TrQ(ζdn)/Q(χ(C)ζ−idn ) makes sense in summands where εC(ud) 6= 0. This is a conse-

quence of Proposition 5.3 because in that case the order of C divides n
d and hence χ(C) ∈ Q(ζdn).

Thus, in the previous formula it is enough to run on the conjugacy classes C in Cln
d

(G). As each

µ(ζin, u, χ) is a non-negative integer we deduce:

Proposition 6.1 (Luthar-Passi [LP89]). Let u ∈ U(ZG) with un = 1 and let χ be an ordinary
character of G. Then

(6.8)
1

n

∑
d|n

∑
C∈Cl n

d
(G)

εC(ud)TrQ(ζdn)/Q(χ(C)ζ−idn ) ∈ Z≥0.

The Luthar-Passi Method uses (6.8) to describe the possible partial augmentations of powers
of u for an element of order n. More precisely, suppose that we want to prove the Zassenhaus
Conjecture for a group G. By the Cohn-Livingstone Theorem (Problem 12) we know that if V (ZG)
has an element of order n then n divides the exponent of G. So we first calculate the exponent of
G and we consider all the possible divisors n of this exponent. For each of these n we calculate
all the tuples (εd,C)d|n,C∈Cl n

d
(G) of integers satisfying

∑
C∈Cl n

d
(G) εd,C = 1 for every d | n and the

following conditions:
1

n

∑
d|n

∑
C∈Cl n

d
(G)

εd,CTrQ(ζdn)/Q(χ(g)ζ−idn ) ∈ Z≥0.

We consider the εd,C as the partial augmentations εC(ud) for a unit u of order n. By Corollary 5.5,
if all the tuples satisfying these conditions are formed by non-negative integers for all the possible
values of n then (ZP1) has a positive solution for G. In that case we say that the Luthar-Passi
Method gives a positive solution of (ZP1) for G.

Hertweck extended (6.7) to Brauer characters. We recall the definition of Brauer characters. Let
p be a prime integer. Let Gp′ denote the set formed by the p-regular elements of G, i.e. those of order
coprime with p. Let m be the least common multiple of the elements of Gp′ and fix ζm a complex
primitive m-th root of unity and ξm a primitive m-th root of unity in a field F of characteristic p.
Let ρ be an F -representation of G and let g ∈ Gp′ . Then ρ(g) is conjugate to diag(ξi1m, . . . , ξ

ik
m) for

some integers i1, . . . , ik. Thus the character afforded by ρ maps g to ξi1m + · · ·+ ξikm . By definition,
the Brauer character afforded by ρ is the map χ : Gp′ → C associating g with ζi1m + · · · + ζikm .
Composing ρ with the natural projection ZG → FpG ⊆ FG we obtain a ring homomorphism
ρ : ZG → Mn(F ). Then (6.7) gives the multiplicity of ξin as an eigenvalue of ρ(u) [Her07]. This
provides more constrains to the possible partial augmentations of a p-regular units. This has been
used to obtain positive solutions for (ZP1) for cases where the equations provided by ordinary
characters are not sufficient. However, for solvable groups, by the Fong-Swan-Rulokain Theorem
[CR87, 22.1] the Brauer characters does not add additional constrains.

7. Problems

(1) Prove that if A and B are n × n matrices with entries in a commutative ring R then
tr(AB) = tr(BA). Deduce that if A and B are conjugate in Mn(R) then tr(A) = tr(B).

(2) Let A be an m×m matrix with entries in the field of complex numbers. Prove that
(a) If An = I then A is diagonalizable and the eigenvalues of A are n-th roots of unity.

Deduce that |tr(A)| ≤ m and if the equality holds then A is a scalar matrix.
(b) If A2 = A then A is diagonalizable and every eigenvalue of A is either 1 or 0. Deduce

that tr(A) is the rank of A.
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(3) Let R be a ring, G be a group and let N,N1 and N2 be normal subgroups of G with N1 ⊆
N2. Let Φ : RG/N2 → R

(
G/N1

N2/N1

)
be the R-linear extension of the natural isomorphism

G/N2
∼= G/N1

N2/N1
. Prove the following statements:

(a) AugN (RG) = RGAug(RN) = Aug(RN)RG.
(b) Aug(RG) =

⊕
g∈G\{1}R(g − 1).

(c) Φ ◦ augG,N2
= augG/N1,N2/N1

◦ augG,N1
.

(d) AugN1
(RG) ⊆ AugN2

(RG).
(e) V (RG,G) = V (RG), V (RG, 1) = 1 and V (RG,N1) ⊆ V (RG,N2).

(4) Let F be a field of characteristic p > 0 and let G be a group. Prove the following statements:
(a) If G is a p-group then Aug(FG) is the Jacobson radical of FG.
(b) If P is a normal p-subgroup of G then AugP (FG) is nilpotent.

(5) Let G be a finite group, let p be a prime integer and let P be a normal p-subgroup of G.
Prove that every torsion element of V (ZG,P ) is a p-element.

(6) Prove that A and B are two abelian finite groups then CA ∼= CB if and only if A and B
have the same cardinality.

(7) Let R be a commutative ring and let G and H be groups. Let f : RG → RH be a ring
homomorphism. Prove that there is a unique ring homomorphism f ′ : RG → RH such
that f ′(g) = aug(f(g))−1f(g) for every g ∈ G and aug(f(x)) = aug(x) for every x ∈ RG.
Show that if f is an isomorphism then so is f ′.

(8) Prove that the following statements are equivalent for a finite group G and a finite subgroup
H of V (ZG):
(a) |H| = |G|.
(b) ZG = Z[H]. (Recall that Z[H] denotes the additive sugroup of ZG generated by H.)
(c) H is an basis of ZG over Z.

(9) Prove that the Isomorphism Problem holds for a finite group G if and only if every subgroup
of V (ZG) with the same cardinality as G is isomorphic to G.

(10) Consider S3 = 〈a〉 o 〈b〉, the symmetric group on three symbols, where a = (1, 2, 3) and
b = (1, 2). Prove the following:

(a) ρ(a) =

(
−2 −3
1 1

)
and ρ(b) =

(
1 0
−1 −1

)
defines an irreducible representation

of S3. (Hint: Let χ denote the character afforded by ρ. By Character Theory, ρ is
irreducible if and only if

∑
g∈S3

χ(g)χ(g−1) = |S3|.)
(b) Let φ : CS3 → C× C×M2(C) be the unique linear map with φ(g) = (1, sgn(g), ρ(g))

for g ∈ S3. Then φ is a isomorphism of complex algebras and

φ(ZS3) =


(
x, y,

(
a 3b
c d

))
: x, y, a, b, c, d ∈ Z,

x ≡ y mod 2,
x ≡ a mod 3,
y ≡ d mod 3

 .

(c) V (ZS3) contains an element u of order 2 with φ(u) = (1,−1,diag(1,−1)).
(d) u is not conjugate in the units of ZS3 to any element of S3.
(e) Every torsion element of V (ZS3) is conjugate in the units of QS3 to an element of S3.

(11) Let p and n be positive integers with p prime integer. Prove the following statements:
(a) If x and y are elements of a ring R then

(x+ y)p
n

≡ xp
n

+ yp
n

mod (pR+ [R,R]).

Moreover, if x ∈ [R,R] then xp ∈ pR+ [R,R].
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(b) If G is a finite group and u is a torsion element of V (ZG) then |u| = pn if and only if
εG[pn](u) 6≡ 0 mod p.

(12) [Cohn-Livingstone [CL65]] If G is a finite group then V (ZG) and G have the same primary
spectrum, i.e. for every prime and every positive integer G contains an element of order pn

if and only if so does V (ZG). In particular, the least common multiple of the orders of the
torsion elements of V (ZG) is the exponent of G, i.e. the smallest positive integer e such
that ge = 1 for every g ∈ G.

(13) Let G a finite group and let u be an element of prime order p in V (ZG). Prove that if all
the elements of order p in G are conjugate then u is rationally conjugate to an element of
G. Conclude that, in general, G is a subgroup of a group H such that u is conjugate in
QH to an element of G.

(14) Use the Luthar-Passi Method to prove that (ZP1) has a positive solution for S3, A4, S4 and
A5.

(15) Prove that the Luthar-Passi Method does not provide a positive answer to (ZP1) for A6.
(Hint: First prove that every torsion element of V (ZA6) of order 2 or 3 is rationally con-
jugate to an element of A6 and then apply the Luthar-Passi Method to units of order
6.)
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