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Prototype examples of connected reductive groups:
G = SLn(K ) or G = GLn(K )

K : algebraically closed field (here usually K = F̄p)

T : diagonal matrices in G (a maximal torus ∼= (K×)n)

B: upper triangular matrices in G (a Borel subgroup, solvable)

Ui j , 1≤ i, j ≤ n, i 6= j : subgroup {ui j(a)= 1+aEi j | a ∈ K } ∼= K+ (a root
subgroup, for t = diag(t1, . . . , tn) ∈ T we have ui j(a)t = ui j(tj t−1

i a))

U : = 〈Ui j | i < j〉C B (unipotent radical of B)

N : the normalizer NG(T )= subgroup of monomial matrices

W = N/T : this is ∼= Sn, the symmetric group (the Weyl group of G)

We have
I G = 〈T,Ui, j | i, j〉, (G = 〈Ui, j〉 in case SL),
I B = T nU and T = B ∩ N ,
I SL2(K )� 〈Ui j ,Uj i〉 for i 6= j ,
I G =

⋃
w∈W BẇB (Bruhat decomposition).
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Roots, coroots and Weyl group
T ∼= (K×)r : a maximal torus of G

X = Hom(T,K×)= {x : T → K×, (t1, . . . , tr) 7→ ta1
1 · · · t

ar
r | ai ∈ Z}
(character group of T )

Y = Hom(K×,T )= {y : K×→ T, t 7→ (ta1, . . . , tar ) | ai ∈ Z}
(cocharacter group of T )

X ∼= Zr , Y ∼= Zr , dual via 〈·, ·〉 : X ×Y → Z (〈x, y〉 = k if x ◦ y : t 7→ t k)

For root subgroup write Uα = {uα(a) | a ∈ K } if α ∈ X with
t−1uα(a)t = uα(α(t)a) for all t ∈ T

For Uα restrict SL2(K )� 〈Uα,U−α〉 to diag(t−1, t) to find α∨ ∈ Y

Yields set of roots 8⊂ X and corresponding coroots 8∨ ⊂ Y of G

1⊂8 set of simple roots if linearly independent and 8⊂±Z≥01

For α ∈8 set sα : X→ X , x 7→ x−〈x,α∨〉α (reflection on X )

Weyl group W ∼= 〈sα | α ∈1〉 as Coxeter group
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Root data

Let X ∼= Zr ∼= Y in duality via 〈·, ·〉 : X ×Y → Z.

Let 1= {α1, . . .αl} ⊂ X and 1∨ = {α∨1 , . . . ,α
∨

l } ⊂ Y .

Definition. (1,1∨) is called a root datum, if and only if C = (〈αj ,α
∨

i 〉)1≤i, j≤l

is the Cartan matrix of a finite root system.
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That is, after possible reordering, C is block diagonal with blocks described by
diagrams

E7 t1 t3 t4t2

t5 t6 t7 E8 t1 t3 t4t2

t5 t6 t7 t8
G2 t1> t2 F4 t1 t2> t3 t4 E6 t1 t3 t4t2

t5 t6
Dl

t1
@
@t2�
�
t3 t4 p p p tl Cl t1> t2 t3 p p p tl

Al t1 t2 t3 p p p tl Bl t1< t2 t3 p p p tl

Diagonal entries of C are 2 and if nodes i, j are connected by k bonds the Ci, j

and C j,i are −1 and −k.
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Root data

Let X ∼= Zr ∼= Y in duality via 〈·, ·〉 : X ×Y → Z.

Let 1= {α1, . . .αl} ⊂ X and 1∨ = {α∨1 , . . . ,α
∨

l } ⊂ Y .

Definition. (1,1∨) is called a root datum, if and only if C = (〈αj ,α
∨

i 〉)1≤i, j≤l

is the Cartan matrix of a finite root system.

From root datum compute generating matrices of W = {sα | α ∈1}. Compute
all roots 8 and coroots 8∨ as W -orbits of simple roots and coroots. This yields
(X,8,Y,8∨) which often occurs as “root datum” in the literature.

Existence- and Isomorphism Theorem [Chevalley, Steinberg]: Each root
datum comes from a connected reductive group G over any K = K̄ .

The root datum determines a presentation of G over any K .
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Examples of root data

We write elements of 1 and 1∨ in rows of matrices with respect to dual bases
of X and Y .

G = GLn(K ) yields root datum

1=


−1 1
−1 1

. . . . . .

−1 1

=1∨
and G = SLn(K ) yields root datum

1=


−1 1
−1 1

. . . . . .

−1 1
−1 −1 −1 −1 −2

, 1∨ =


−1 1
−1 1

. . . . . .

−1 1
−1


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Both yield the same Cartan matrix of type Al :

C =1∨1tr
=


2 −1 0 0 0
−1 2 −1 0 0

. . . . . .

0 0 0 −1 2


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Frobenius morphisms

From now p is a prime and K = F̄p, G is a linear algebraic group over K .

For any power q of p define Fq : GLn(K )→ GLn(K ), (ai j) 7→ (aq
i j).

Definition. A morphism F : G→ G is a Frobenius morphism if there is a q
and φ : G ↪→ GLn(K ) such that for some power e and all g ∈ G we have
φ(F e(g))= Fqe(φ(g)).

If q = p f is an integer we say that G is defined over Fq via F .

The group of fixed points G F
= G(q)= {g ∈ G | F(g)= g} is finite.

Definition. If G is a connected reductive group with Frobenius morphism F ,
then G F is called a finite group of Lie type.

Examples. G = GLn(F̄q), F = Fq , then G F
= GLn(q).

G = SLn(F̄q), F(A) := Fq(A−tr), then G F
= SUn(q). G = F4(F̄2), m ∈ N,

there is F with F2
= F22m+1 and G F

=
2F4(22m+1) are the large Ree groups.
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Root datum with F-action

G: connected reductive with Frobenius morphism F
T : maximal torus with F(T )= T .

F induces a map on X (via F(x)(t)= x(F(t)) for t ∈ T ) of form q F0 with an
automorphism F0 of finite order. When q ∈ Z then F0(8)=8, and for the dual
map on Y we have F tr

0 (8
∨)=8∨.

Vice versa, given such F0 and a p-power q there is a corresponding Frobenius
morphism of G fixing T (unique up to inner automorphism, isogeny theorem).

F0(1) is also a set of simple roots, there is unique w ∈W with F0(1w)=1.
So wF0 induces a permutation of 1 (a graph automorphism of the Dynkin
diagram).
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Definition. A triple (1,1∨,F0) with F0 ∈ Zr×r of finite order is a root datum
with Frobenius action if (1,1∨) represents a root datum, and 8F0 =8,
8∨F tr

0 =8
∨.

Theorem. A root datum with Frobenius action defines for every prime power q
a finite group of Lie type G(q) (unique up to isomorphism).

Definition. Fix a root datum with Frobenius action. Then the set of
corresponding groups {G(q) | q a prime power} is called a series of groups of
Lie type. (These are infinitely many groups for each prime p.)

Example G = GLn(K ): F = Fq yields F0 = id, then G(q)= GLn(q).
F : G→ G, g 7→ Fq(g−tr) yields F0 =−id, then G(q)= GUn(q).
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Computing with torus elements

F̄×p ∼= (Q/Z)
+

p′
∼= µp′ (roots of unity of p′-order in C)

ζq−1 7→
1

q−1( (mod Z)) 7→ exp(2π i/(q−1) for certain primitive roots ζq−1

Then T ∼= Y ⊗Z F̄×p ∼= Y ⊗Z (Q/Z)p′
∼= (Q/Z)p′)

r

On t ∈ T = (Q/Z)p′)
r (row “vector”) the actions of x ∈ X , F and w ∈W on t

can be written as matrix multiplication:

x(t)= t x tr , F(t)= t (q F0), tw = twX where wX is the action matrix of w on X .
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