Modelling algebraic and finite reductive groups on a computer

Frank Lübeck Lehrstuhl D für Mathematik, RWTH Aachen

ICTS Bangalore, Oct 14-23, 2019

Prototype examples of connected reductive groups:

$$G = \operatorname{SL}_n(K)$$
 or $G = \operatorname{GL}_n(K)$

K: algebraically closed field (here usually $K = \bar{\mathbb{F}}_p$)

T: diagonal matrices in G (a maximal torus $\cong (K^{\times})^n$)

B: upper triangular matrices in G (a Borel subgroup, solvable)

$$U_{ij}$$
, $1 \le i, j \le n, i \ne j$: subgroup $\{u_{ij}(a) = 1 + aE_{ij} \mid a \in K\} \cong K^+$ (a root subgroup, for $t = \operatorname{diag}(t_1, \dots, t_n) \in T$ we have $u_{ij}(a)^t = u_{ij}(t_jt_i^{-1}a)$)

$$U := \langle U_{ij} \mid i < j \rangle \triangleleft B$$
 (unipotent radical of B)

N: the normalizer $N_G(T) = \text{subgroup of monomial matrices}$

$$W = N/T$$
: this is $\cong S_n$, the symmetric group (the Weyl group of G)

We have

$$ightharpoonup G = \langle T, U_{i,j} \mid i, j \rangle, (G = \langle U_{i,j} \rangle \text{ in case SL}),$$

$$\triangleright$$
 $B = T \ltimes U$ and $T = B \cap N$,

▶
$$SL_2(K) \rightarrow \langle U_{ij}, U_{ji} \rangle$$
 for $i \neq j$,

$$ightharpoonup G = \bigcup_{w \in W} B\dot{w}B$$
 (Bruhat decomposition).

Roots, coroots and Weyl group

 $T \cong (K^{\times})^r$: a maximal torus of G

$$X = \operatorname{Hom}(T, K^{\times}) = \{x : T \to K^{\times}, (t_1, \dots, t_r) \mapsto t_1^{a_1} \cdots t_r^{a_r} \mid a_i \in \mathbb{Z}\}$$
(character group of T)

$$Y = \operatorname{Hom}(K^{\times}, T) = \{ y : K^{\times} \to T, t \mapsto (t^{a_1}, \dots, t^{a_r}) \mid a_i \in \mathbb{Z} \}$$
(cocharacter group of T)

$$X \cong \mathbb{Z}^r, Y \cong \mathbb{Z}^r, \text{ dual via } \langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z} \quad (\langle x, y \rangle = k \text{ if } x \circ y : t \mapsto t^k)$$

For root subgroup write
$$U_{\alpha} = \{u_{\alpha}(a) \mid a \in K\}$$
 if $\alpha \in X$ with $t^{-1}u_{\alpha}(a)t = u_{\alpha}(\alpha(t)a)$ for all $t \in T$

- For U_{α} restrict $SL_2(K) \rightarrow \langle U_{\alpha}, U_{-\alpha} \rangle$ to $diag(t^{-1}, t)$ to find $\alpha^{\vee} \in Y$
- Yields set of roots $\Phi \subset X$ and corresponding coroots $\Phi^{\vee} \subset Y$ of G
- $\Delta \subset \Phi$ set of simple roots if linearly independent and $\Phi \subset \pm \mathbb{Z}_{>0} \Delta$
- For $\alpha \in \Phi$ set $s_{\alpha} : X \to X$, $x \mapsto x \langle x, \alpha^{\vee} \rangle \alpha$ (reflection on X)

Root data

Let $X \cong \mathbb{Z}^r \cong Y$ in duality via $\langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$.

Let $\Delta = {\alpha_1, \dots \alpha_l} \subset X$ and $\Delta^{\vee} = {\alpha_1^{\vee}, \dots, \alpha_l^{\vee}} \subset Y$.

Definition. (Δ, Δ^{\vee}) is called a root datum, if and only if $C = (\langle \alpha_j, \alpha_i^{\vee} \rangle)_{1 \leq i, j \leq l}$ is the Cartan matrix of a finite root system.

That is, after possible reordering, C is block diagonal with blocks described by diagrams

Diagonal entries of C are 2 and if nodes i, j are connected by k bonds the $C_{i,j}$ and $C_{j,i}$ are -1 and -k.

Root data

Let $X \cong \mathbb{Z}^r \cong Y$ in duality via $\langle \cdot, \cdot \rangle : X \times Y \to \mathbb{Z}$.

Let
$$\Delta = \{\alpha_1, \dots \alpha_l\} \subset X$$
 and $\Delta^{\vee} = \{\alpha_1^{\vee}, \dots, \alpha_l^{\vee}\} \subset Y$.

Definition. (Δ, Δ^{\vee}) is called a root datum, if and only if $C = (\langle \alpha_j, \alpha_i^{\vee} \rangle)_{1 \leq i, j \leq l}$ is the Cartan matrix of a finite root system.

From root datum compute generating matrices of $W = \{s_{\alpha} \mid \alpha \in \Delta\}$. Compute all roots Φ and coroots Φ^{\vee} as W-orbits of simple roots and coroots. This yields $(X, \Phi, Y, \Phi^{\vee})$ which often occurs as "root datum" in the literature.

Existence- and Isomorphism Theorem [Chevalley, Steinberg]: Each root datum comes from a connected reductive group G over any $K = \overline{K}$.

The root datum determines a presentation of G over any K.

Examples of root data

We write elements of Δ and Δ^{\vee} in rows of matrices with respect to dual bases of X and Y.

 $G = GL_n(K)$ yields root datum

$$\Delta = \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & & \\ & & \dots & \dots & \\ & & & -1 & 1 \end{pmatrix} = \Delta^{\vee}$$

and $G = SL_n(K)$ yields root datum

Both yield the same Cartan matrix of type A_l :

$$C = \Delta^{\vee} \Delta^{tr} = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ & \dots & \dots & \\ 0 & 0 & 0 & -1 & 2 \end{pmatrix}$$

Frobenius morphisms

From now p is a prime and $K = \overline{\mathbb{F}}_p$, G is a linear algebraic group over K.

For any power q of p define $F_q : GL_n(K) \to GL_n(K)$, $(a_{ij}) \mapsto (a_{ij}^q)$.

Definition. A morphism $F: G \to G$ is a Frobenius morphism if there is a q and $\phi: G \hookrightarrow \operatorname{GL}_n(K)$ such that for some power e and all $g \in G$ we have $\phi(F^e(g)) = F_{q^e}(\phi(g))$.

If $q = p^f$ is an integer we say that G is defined over \mathbb{F}_q via F.

The group of fixed points $G^F = G(q) = \{g \in G \mid F(g) = g\}$ is finite.

Definition. If G is a connected reductive group with Frobenius morphism F, then G^F is called a finite group of Lie type.

Examples. $G = \operatorname{GL}_n(\bar{\mathbb{F}}_q)$, $F = F_q$, then $G^F = \operatorname{GL}_n(q)$. $G = \operatorname{SL}_n(\bar{\mathbb{F}}_q)$, $F(A) := F_q(A^{-tr})$, then $G^F = \operatorname{SU}_n(q)$. $G = F_4(\bar{\mathbb{F}}_2)$, $m \in \mathbb{N}$, there is F with $F^2 = F_{2^{2m+1}}$ and $G^F = {}^2F_4(2^{2m+1})$ are the large Ree groups.

Root datum with F-action

G: connected reductive with Frobenius morphism F

T: maximal torus with F(T) = T.

F induces a map on X (via F(x)(t) = x(F(t)) for $t \in T$) of form qF_0 with an automorphism F_0 of finite order. When $q \in \mathbb{Z}$ then $F_0(\Phi) = \Phi$, and for the dual map on Y we have $F_0^{tr}(\Phi^{\vee}) = \Phi^{\vee}$.

Vice versa, given such F_0 and a p-power q there is a corresponding Frobenius morphism of G fixing T (unique up to inner automorphism, isogeny theorem).

 $F_0(\Delta)$ is also a set of simple roots, there is unique $w \in W$ with $F_0(\Delta w) = \Delta$. So wF_0 induces a permutation of Δ (a graph automorphism of the Dynkin diagram).

Definition. A triple $(\Delta, \Delta^{\vee}, F_0)$ with $F_0 \in \mathbb{Z}^{r \times r}$ of finite order is a root datum with Frobenius action if (Δ, Δ^{\vee}) represents a root datum, and $\Phi F_0 = \Phi$, $\Phi^{\vee} F_0^{rr} = \Phi^{\vee}$.

Theorem. A root datum with Frobenius action defines for every prime power q a finite group of Lie type G(q) (unique up to isomorphism).

Definition. Fix a root datum with Frobenius action. Then the set of corresponding groups $\{G(q) \mid q \text{ a prime power}\}$ is called a series of groups of Lie type. (These are infinitely many groups for each prime p.)

Example $G = GL_n(K)$: $F = F_q$ yields $F_0 = \text{id}$, then $G(q) = GL_n(q)$. $F: G \to G$, $g \mapsto F_q(g^{-tr})$ yields $F_0 = -\text{id}$, then $G(q) = GU_n(q)$.

Computing with torus elements

$$\bar{\mathbb{F}}_p^\times \cong (\mathbb{Q}/\mathbb{Z})_{p'}^+ \cong \mu_{p'} \text{ (roots of unity of p'-order in } \mathbb{C})$$

$$\zeta_{q-1} \mapsto \frac{1}{q-1} (\pmod{\mathbb{Z}}) \mapsto \exp(2\pi i/(q-1))$$
 for certain primitive roots ζ_{q-1}

Then
$$T \cong Y \otimes_{\mathbb{Z}} \bar{\mathbb{F}}_p^{\times} \cong Y \otimes_{\mathbb{Z}} (\mathbb{Q}/\mathbb{Z})_{p'} \cong (\mathbb{Q}/\mathbb{Z})_{p'})^r$$

On $t \in T = (\mathbb{Q}/\mathbb{Z})_{p'})^r$ (row "vector") the actions of $x \in X$, F and $w \in W$ on t can be written as matrix multiplication:

$$x(t) = tx^{tr}$$
, $F(t) = t(qF_0)$, $t^w = tw_X$ where w_X is the action matrix of w on X .