Modelling algebraic and finite reductive groups on a computer

Frank Lübeck
Lehrstuhl D für Mathematik, RWTH Aachen

ICTS Bangalore, Oct 14-23, 2019

Prototype examples of connected reductive groups:

$G=\mathrm{SL}_{n}(K)$ or $G=\mathrm{GL}_{n}(K)$
K : algebraically closed field (here usually $K=\overline{\mathbb{F}}_{p}$)
T : diagonal matrices in G (a maximal torus $\left.\cong\left(K^{\times}\right)^{n}\right)$
B : upper triangular matrices in G (a Borel subgroup, solvable)
$U_{i j}, 1 \leq i, j \leq n, i \neq j$: subgroup $\left\{u_{i j}(a)=1+a E_{i j} \mid a \in K\right\} \cong K^{+}$(a root subgroup, for $t=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right) \in T$ we have $\left.u_{i j}(a)^{t}=u_{i j}\left(t_{j} t_{i}^{-1} a\right)\right)$
$U:=\left\langle U_{i j} \mid i<j\right\rangle \triangleleft B$ (unipotent radical of B)
N : the normalizer $N_{G}(T)=$ subgroup of monomial matrices
$W=N / T$: this is $\cong S_{n}$, the symmetric group (the Weyl group of G)
We have

- $G=\left\langle T, U_{i, j} \mid i, j\right\rangle,\left(G=\left\langle U_{i, j}\right\rangle\right.$ in case SL $)$,
- $B=T \ltimes U$ and $T=B \cap N$,
- $\mathrm{SL}_{2}(K) \rightarrow\left\langle U_{i j}, U_{j i}\right\rangle$ for $i \neq j$,
- $G=\bigcup_{w \in W} B \dot{w} B$ (Bruhat decomposition).

Roots, coroots and Weyl group

$T \cong\left(K^{\times}\right)^{r}$: a maximal torus of G
$X=\operatorname{Hom}\left(T, K^{\times}\right)=\left\{x: T \rightarrow K^{\times},\left(t_{1}, \ldots, t_{r}\right) \mapsto t_{1}^{a_{1}} \cdots t_{r}^{a_{r}} \mid a_{i} \in \mathbb{Z}\right\}$
(character group of T)
$Y=\operatorname{Hom}\left(K^{\times}, T\right)=\left\{y: K^{\times} \rightarrow T, t \mapsto\left(t^{a_{1}}, \ldots, t^{a_{r}}\right) \mid a_{i} \in \mathbb{Z}\right\}$
(cocharacter group of T)
$X \cong \mathbb{Z}^{r}, Y \cong \mathbb{Z}^{r}$, dual via $\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z} \quad\left(\langle x, y\rangle=k\right.$ if $\left.x \circ y: t \mapsto t^{k}\right)$
For root subgroup write $U_{\alpha}=\left\{u_{\alpha}(a) \mid a \in K\right\}$ if $\alpha \in X$ with

$$
t^{-1} u_{\alpha}(a) t=u_{\alpha}(\alpha(t) a) \text { for all } t \in T
$$

For U_{α} restrict $\mathrm{SL}_{2}(K) \rightarrow\left\langle U_{\alpha}, U_{-\alpha}\right\rangle$ to $\operatorname{diag}\left(t^{-1}, t\right)$ to find $\alpha^{\vee} \in Y$
Yields set of roots $\Phi \subset X$ and corresponding coroots $\Phi^{\vee} \subset Y$ of G
$\Delta \subset \Phi$ set of simple roots if linearly independent and $\Phi \subset \pm \mathbb{Z}_{\geq 0} \Delta$
For $\alpha \in \Phi$ set $s_{\alpha}: X \rightarrow X, x \mapsto x-\left\langle x, \alpha^{\vee}\right\rangle \alpha$ (reflection on X)
Weyl group $W \cong\left\langle s_{\alpha} \mid \alpha \in \Delta\right\rangle$ as Coxeter group

Root data

Let $X \cong \mathbb{Z}^{r} \cong Y$ in duality via $\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z}$.
Let $\Delta=\left\{\alpha_{1}, \ldots \alpha_{l}\right\} \subset X$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{l}^{\vee}\right\} \subset Y$.
Definition. $\left(\Delta, \Delta^{\vee}\right)$ is called a root datum, if and only if $C=\left(\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle\right)_{1 \leq i, j \leq l}$ is the Cartan matrix of a finite root system.

That is, after possible reordering, C is block diagonal with blocks described by diagrams

Diagonal entries of C are 2 and if nodes i, j are connected by k bonds the $C_{i, j}$ and $C_{j, i}$ are -1 and $-k$.

Root data

Let $X \cong \mathbb{Z}^{r} \cong Y$ in duality via $\langle\cdot, \cdot\rangle: X \times Y \rightarrow \mathbb{Z}$.
Let $\Delta=\left\{\alpha_{1}, \ldots \alpha_{l}\right\} \subset X$ and $\Delta^{\vee}=\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{l}^{\vee}\right\} \subset Y$.
Definition. $\left(\Delta, \Delta^{\vee}\right)$ is called a root datum, if and only if $C=\left(\left\langle\alpha_{j}, \alpha_{i}^{\vee}\right\rangle\right)_{1 \leq i, j \leq l}$ is the Cartan matrix of a finite root system.

From root datum compute generating matrices of $W=\left\{s_{\alpha} \mid \alpha \in \Delta\right\}$. Compute all roots Φ and coroots Φ^{\vee} as W-orbits of simple roots and coroots. This yields (X, Φ, Y, Φ^{\vee}) which often occurs as "root datum" in the literature.

Existence- and Isomorphism Theorem [Chevalley, Steinberg]: Each root datum comes from a connected reductive group G over any $K=\bar{K}$.

The root datum determines a presentation of G over any K.

Examples of root data

We write elements of Δ and Δ^{\vee} in rows of matrices with respect to dual bases of X and Y.
$G=\mathrm{GL}_{n}(K)$ yields root datum

$$
\Delta=\left(\begin{array}{rrrrrr}
-1 & 1 & & & & \\
& -1 & 1 & & & \\
& & \cdots & \cdots & & \\
& & & & -1 & 1
\end{array}\right)=\Delta^{\vee}
$$

and $G=\mathrm{SL}_{n}(K)$ yields root datum

$$
\Delta=\left(\begin{array}{rrrrr}
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \ldots & \ldots & \\
& & & -1 & 1 \\
-1 & -1 & -1 & -1 & -2
\end{array}\right), \quad \Delta^{\vee}=\left(\begin{array}{rrrrr}
-1 & 1 & & & \\
& -1 & 1 & & \\
& & \cdots & \ldots & \\
& & & -1 & 1 \\
& & & & -1
\end{array}\right)
$$

Both yield the same Cartan matrix of type A_{l} :

$$
C=\Delta^{\vee} \Delta^{t r}=\left(\begin{array}{rrrrr}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
& \ldots & \cdots & & \\
0 & 0 & 0 & -1 & 2
\end{array}\right)
$$

Frobenius morphisms

From now p is a prime and $K=\overline{\mathbb{F}}_{p}, G$ is a linear algebraic group over K.
For any power q of p define $F_{q}: \mathrm{GL}_{n}(K) \rightarrow \mathrm{GL}_{n}(K),\left(a_{i j}\right) \mapsto\left(a_{i j}^{q}\right)$.
Definition. A morphism $F: G \rightarrow G$ is a Frobenius morphism if there is a q and $\phi: G \hookrightarrow \mathrm{GL}_{n}(K)$ such that for some power e and all $g \in G$ we have $\phi\left(F^{e}(g)\right)=F_{q^{e}}(\phi(g))$.

If $q=p^{f}$ is an integer we say that G is defined over \mathbb{F}_{q} via F.
The group of fixed points $G^{F}=G(q)=\{g \in G \mid F(g)=g\}$ is finite.
Definition. If G is a connected reductive group with Frobenius morphism F, then G^{F} is called a finite group of Lie type.

Examples. $G=\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right), F=F_{q}$, then $G^{F}=\mathrm{GL}_{n}(q)$.
$G=\mathrm{SL}_{n}\left(\overline{\mathbb{F}}_{q}\right), F(A):=F_{q}\left(A^{-t r}\right)$, then $G^{F}=\mathrm{SU}_{n}(q) . G=F_{4}\left(\overline{\mathbb{F}}_{2}\right), m \in \mathbb{N}$, there is F with $F^{2}=F_{2^{2 m+1}}$ and $G^{F}={ }^{2} F_{4}\left(2^{2 m+1}\right)$ are the large Ree groups.

Root datum with F-action

G : connected reductive with Frobenius morphism F T : maximal torus with $F(T)=T$.
F induces a map on $X($ via $F(x)(t)=x(F(t))$ for $t \in T)$ of form $q F_{0}$ with an automorphism F_{0} of finite order. When $q \in \mathbb{Z}$ then $F_{0}(\Phi)=\Phi$, and for the dual map on Y we have $F_{0}^{t r}\left(\Phi^{\vee}\right)=\Phi^{\vee}$.

Vice versa, given such F_{0} and a p-power q there is a corresponding Frobenius morphism of G fixing T (unique up to inner automorphism, isogeny theorem).
$F_{0}(\Delta)$ is also a set of simple roots, there is unique $w \in W$ with $F_{0}(\Delta w)=\Delta$. So $w F_{0}$ induces a permutation of Δ (a graph automorphism of the Dynkin diagram).

Definition. A triple $\left(\Delta, \Delta^{\vee}, F_{0}\right)$ with $F_{0} \in \mathbb{Z}^{r \times r}$ of finite order is a root datum with Frobenius action if $\left(\Delta, \Delta^{\vee}\right)$ represents a root datum, and $\Phi F_{0}=\Phi$, $\Phi^{\vee} F_{0}^{t r}=\Phi^{\vee}$.

Theorem. A root datum with Frobenius action defines for every prime power q a finite group of Lie type $G(q)$ (unique up to isomorphism).

Definition. Fix a root datum with Frobenius action. Then the set of corresponding groups $\{G(q) \mid q$ a prime power $\}$ is called a series of groups of Lie type. (These are infinitely many groups for each prime p.)

Example $G=G L_{n}(K): F=F_{q}$ yields $F_{0}=\mathrm{id}$, then $G(q)=\mathrm{GL}_{n}(q)$. $F: G \rightarrow G, g \mapsto F_{q}\left(g^{-t r}\right)$ yields $F_{0}=-\mathrm{id}$, then $G(q)=\mathrm{GU}_{n}(q)$.

Computing with torus elements

$\overline{\mathbb{F}}_{p}^{\times} \cong(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}^{+} \cong \mu_{p^{\prime}}\left(\right.$ roots of unity of p^{\prime}-order in $\left.\mathbb{C}\right)$
$\zeta_{q-1} \mapsto \frac{1}{q-1}((\bmod \mathbb{Z})) \mapsto \exp \left(2 \pi i /(q-1)\right.$ for certain primitive roots ζ_{q-1}
Then $\left.T \cong Y \otimes_{\mathbb{Z}} \overline{\mathbb{F}}_{p}^{\times} \cong Y \otimes_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})_{p^{\prime}} \cong(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}\right)^{r}$
On $\left.t \in T=(\mathbb{Q} / \mathbb{Z})_{p^{\prime}}\right)^{r}$ (row "vector") the actions of $x \in X, F$ and $w \in W$ on t can be written as matrix multiplication:
$x(t)=t x^{t r}, F(t)=t\left(q F_{0}\right), t^{w}=t w_{X}$ where w_{X} is the action matrix of w on X.

