- (1) Prove that if A and B are $n \times n$ matrices with entries in a commutative ring R then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$. Deduce that if A and B are conjugate in $M_n(R)$ then $\operatorname{tr}(A) = \operatorname{tr}(B)$.
- (2) Let A be an $m \times m$ matrix with entries in the field of complex numbers. Prove that
 - (a) If $A^n = I$ then A is diagonalizable and the eigenvalues of A are n-th roots of unity. Deduce that |tr(A)| < m and if the equality holds then A is a scalar matrix.
 - (b) If $A^2 = A$ then A is diagonalizable and every eigenvalue of A is either 1 or 0. Deduce that tr(A) is the rank of A.
- (3) Let R be a ring, G be a group and let N, N_1 and N_2 be normal subgroups of G with $N_1 \subseteq$ N_2 . Let $\Phi: RG/N_2 \to R\left(\frac{G/N_1}{N_2/N_1}\right)$ be the *R*-linear extension of the natural isomorphism $G/N_2 \cong \frac{G/N_1}{N_2/N_1}$. Prove the following statements:
 - (a) $\operatorname{Aug}_{N}(RG) = RG\operatorname{Aug}(RN) = \operatorname{Aug}(RN)RG.$
 - (b) Aug $(RG) = \bigoplus_{g \in G \setminus \{1\}} R(g-1).$
 - (c) $\Phi \circ \operatorname{aug}_{G,N_2} = \operatorname{aug}_{G/N_1,N_2/N_1} \circ \operatorname{aug}_{G,N_1}$.
 - (d) $\operatorname{Aug}_{N_1}(RG) \subseteq \operatorname{Aug}_{N_2}(RG)$.
 - (e) V(RG, G) = V(RG), V(RG, 1) = 1 and $V(RG, N_1) \subseteq V(RG, N_2)$.
- (4) Let F be a field of characteristic p > 0 and let G be a group. Prove the following statements: (a) If G is a p-group then $\operatorname{Aug}(FG)$ is the Jacobson radical of FG.
 - (b) If P is a normal p-subgroup of G then $\operatorname{Aug}_P(FG)$ is nilpotent.
- (5) Let G be a finite group, let p be a prime integer and let P be a normal p-subgroup of G. Prove that every torsion element of $V(\mathbb{Z}G, P)$ is a *p*-element.
- (6) Prove that A and B are two abelian finite groups then $\mathbb{C}A \cong \mathbb{C}B$ if and only if A and B have the same cardinality.
- (7) Let R be a commutative ring and let G and H be groups. Let $f: RG \to RH$ be a ring homomorphism. Prove that there is a unique ring homomorphism $f': RG \to RH$ such that $f'(g) = \operatorname{aug}(f(g))^{-1}f(g)$ for every $g \in G$ and $\operatorname{aug}(f(x)) = \operatorname{aug}(x)$ for every $x \in RG$. Show that if f is an isomorphism then so is f'.
- (8) Prove that the following statements are equivalent for a finite group G and a finite subgroup H of $V(\mathbb{Z}G)$:
 - (a) |H| = |G|.
 - (b) $\mathbb{Z}G = \mathbb{Z}[H]$. (Recall that $\mathbb{Z}[H]$ denotes the additive sugroup of $\mathbb{Z}G$ generated by H.)
 - (c) H is an basis of $\mathbb{Z}G$ over \mathbb{Z} .
- (9) Prove that the Isomorphism Problem holds for a finite group G if and only if every subgroup of $V(\mathbb{Z}G)$ with the same cardinality as G is isomorphic to G.
- (10) Consider $S_3 = \langle a \rangle \rtimes \langle b \rangle$, the symmetric group on three symbols, where a = (1, 2, 3) and
 - b = (1, 2). Prove the following: (a) $\rho(a) = \begin{pmatrix} -2 & -3 \\ 1 & 1 \end{pmatrix}$ and $\rho(b) = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$ defines an irreducible representation of S_3 . (Hint: Let χ denote the character afforded by ρ . By Character Theory, ρ is irreducible if and only if $\sum_{g\in S_3}\chi(g)\chi(g^{-1})=|S_3|.)$
 - (b) Let $\phi : \mathbb{C}S_3 \to \mathbb{C} \times \mathbb{C} \times M_2(\mathbb{C})$ be the unique linear map with $\phi(g) = (1, \operatorname{sgn}(g), \rho(g))$ for $g \in S_3$. Then ϕ is a isomorphism of complex algebras and

$$\phi(\mathbb{Z}S_3) = \left\{ \begin{pmatrix} x, y, \begin{pmatrix} a & 3b \\ c & d \end{pmatrix} \end{pmatrix} : x, y, a, b, c, d \in \mathbb{Z}, \quad x \equiv a \mod 3, \\ y \equiv d \mod 3 \end{pmatrix} \right\}.$$

- (c) $V(\mathbb{Z}S_3)$ contains an element u of order 2 with $\phi(u) = (1, -1, \operatorname{diag}(1, -1))$.
- (d) u is not conjugate in the units of $\mathbb{Z}S_3$ to any element of S_3 .
- (e) Every torsion element of $V(\mathbb{Z}S_3)$ is conjugate in the units of $\mathbb{Q}S_3$ to an element of S_3 .
- (11) Let p and n be positive integers with p prime integer. Prove the following statements:
 - (a) If x and y are elements of a ring R then

$$(x+y)^{p^n} \equiv x^{p^n} + y^{p^n} \mod (pR + [R, R]).$$

Moreover, if $x \in [R, R]$ then $x^p \in pR + [R, R]$.

- (b) If G is a finite group and u is a torsion element of $V(\mathbb{Z}G)$ then $|u| = p^n$ if and only if $\varepsilon_{G[p^n]}(u) \neq 0 \mod p$.
- (12) [Cohn-Livingstone] If G is a finite group then $V(\mathbb{Z}G)$ and G have the same primary spectrum, i.e. for every prime and every positive integer G contains an element of order p^n if and only if so does $V(\mathbb{Z}G)$. In particular, the least common multiple of the orders of the torsion elements of $V(\mathbb{Z}G)$ is the exponent of G, i.e. the smallest positive integer e such that $g^e = 1$ for every $g \in G$.
- (13) Let G a finite group and let u be an element of prime order p in $V(\mathbb{Z}G)$. Prove that if all the elements of order p in G are conjugate then u is rationally conjugate to an element of G. Conclude that, in general, G is a subgroup of a group H such that u is conjugate in $\mathbb{Q}H$ to an element of G.
- (14) Use the Luthar-Passi Method to prove that (ZP1) has a positive solution for S_3, A_4, S_4 and A_5 .
- (15) Prove that the Luthar-Passi Method does not provide a positive answer to (ZP1) for A_6 . (Hint: First prove that every torsion element of $V(\mathbb{Z}A_6)$ of order 2 or 3 is rationally conjugate to an element of A_6 and then apply the Luthar-Passi Method to units of order 6.)