(1) Prove that if A and B are $n \times n$ matrices with entries in a commutative ring R then $\operatorname{tr}(A B)=\operatorname{tr}(B A)$. Deduce that if A and B are conjugate in $M_{n}(R)$ then $\operatorname{tr}(A)=\operatorname{tr}(B)$.
(2) Let A be an $m \times m$ matrix with entries in the field of complex numbers. Prove that
(a) If $A^{n}=I$ then A is diagonalizable and the eigenvalues of A are n-th roots of unity. Deduce that $|\operatorname{tr}(A)| \leq m$ and if the equality holds then A is a scalar matrix.
(b) If $A^{2}=A$ then A is diagonalizable and every eigenvalue of A is either 1 or 0 . Deduce that $\operatorname{tr}(A)$ is the rank of A.
(3) Let R be a ring, G be a group and let N, N_{1} and N_{2} be normal subgroups of G with $N_{1} \subseteq$ N_{2}. Let $\Phi: R G / N_{2} \rightarrow R\left(\frac{G / N_{1}}{N_{2} / N_{1}}\right)$ be the R-linear extension of the natural isomorphism $G / N_{2} \cong \frac{G / N_{1}}{N_{2} / N_{1}}$. Prove the following statements:
(a) $\operatorname{Aug}_{N}(R G)=R G \operatorname{Aug}(R N)=\operatorname{Aug}(R N) R G$.
(b) $\operatorname{Aug}(R G)=\bigoplus_{g \in G \backslash\{1\}} R(g-1)$.
(c) $\Phi \circ \operatorname{aug}_{G, N_{2}}=\operatorname{aug}_{G / N_{1}, N_{2} / N_{1}} \circ \operatorname{aug}_{G, N_{1}}$.
(d) $\operatorname{Aug}_{N_{1}}(R G) \subseteq \operatorname{Aug}_{N_{2}}(R G)$.
(e) $V(R G, G)=V(R G), V(R G, 1)=1$ and $V\left(R G, N_{1}\right) \subseteq V\left(R G, N_{2}\right)$.
(4) Let F be a field of characteristic $p>0$ and let G be a group. Prove the following statements:
(a) If G is a p-group then $\operatorname{Aug}(F G)$ is the Jacobson radical of $F G$.
(b) If P is a normal p-subgroup of G then $\operatorname{Aug}_{P}(F G)$ is nilpotent.
(5) Let G be a finite group, let p be a prime integer and let P be a normal p-subgroup of G. Prove that every torsion element of $V(\mathbb{Z} G, P)$ is a p-element.
(6) Prove that A and B are two abelian finite groups then $\mathbb{C} A \cong \mathbb{C} B$ if and only if A and B have the same cardinality.
(7) Let R be a commutative ring and let G and H be groups. Let $f: R G \rightarrow R H$ be a ring homomorphism. Prove that there is a unique ring homomorphism $f^{\prime}: R G \rightarrow R H$ such that $f^{\prime}(g)=\operatorname{aug}(f(g))^{-1} f(g)$ for every $g \in G$ and $\operatorname{aug}(f(x))=\operatorname{aug}(x)$ for every $x \in R G$. Show that if f is an isomorphism then so is f^{\prime}.
(8) Prove that the following statements are equivalent for a finite group G and a finite subgroup H of $V(\mathbb{Z} G)$:
(a) $|H|=|G|$.
(b) $\mathbb{Z} G=\mathbb{Z}[H]$. (Recall that $\mathbb{Z}[H]$ denotes the additive sugroup of $\mathbb{Z} G$ generated by H.)
(c) H is an basis of $\mathbb{Z} G$ over \mathbb{Z}.
(9) Prove that the Isomorphism Problem holds for a finite group G if and only if every subgroup of $V(\mathbb{Z} G)$ with the same cardinality as G is isomorphic to G.
(10) Consider $S_{3}=\langle a\rangle \rtimes\langle b\rangle$, the symmetric group on three symbols, where $a=(1,2,3)$ and $b=(1,2)$. Prove the following:
(a) $\rho(a)=\left(\begin{array}{cc}-2 & -3 \\ 1 & 1\end{array}\right)$ and $\rho(b)=\left(\begin{array}{cc}1 & 0 \\ -1 & -1\end{array}\right)$ defines an irreducible representation of S_{3}. (Hint: Let χ denote the character afforded by ρ. By Character Theory, ρ is irreducible if and only if $\sum_{g \in S_{3}} \chi(g) \chi\left(g^{-1}\right)=\left|S_{3}\right|$.)
(b) Let $\phi: \mathbb{C} S_{3} \rightarrow \mathbb{C} \times \mathbb{C} \times M_{2}(\mathbb{C})$ be the unique linear map with $\phi(g)=(1, \operatorname{sgn}(g), \rho(g))$ for $g \in S_{3}$. Then ϕ is a isomorphism of complex algebras and

$$
\phi\left(\mathbb{Z} S_{3}\right)=\left\{\left(x, y,\left(\begin{array}{cc}
a & 3 b \\
c & d
\end{array}\right)\right): x, y, a, b, c, d \in \mathbb{Z}, \begin{array}{l}
x \equiv y \bmod 2 \\
x \equiv a \bmod 3 \\
y \equiv d \bmod 3
\end{array}\right\} .
$$

(c) $V\left(\mathbb{Z} S_{3}\right)$ contains an element u of order 2 with $\phi(u)=(1,-1, \operatorname{diag}(1,-1))$.
(d) u is not conjugate in the units of $\mathbb{Z} S_{3}$ to any element of S_{3}.
(e) Every torsion element of $V\left(\mathbb{Z} S_{3}\right)$ is conjugate in the units of $\mathbb{Q} S_{3}$ to an element of S_{3}.
(11) Let p and n be positive integers with p prime integer. Prove the following statements:
(a) If x and y are elements of a ring R then

$$
(x+y)^{p^{n}} \equiv x^{p^{n}}+y^{p^{n}} \quad \bmod (p R+[R, R])
$$

Moreover, if $x \in[R, R]$ then $x^{p} \in p R+[R, R]$.
(b) If G is a finite group and u is a torsion element of $V(\mathbb{Z} G)$ then $|u|=p^{n}$ if and only if $\varepsilon_{G\left[p^{n}\right]}(u) \not \equiv 0 \bmod p$.
(12) [Cohn-Livingstone] If G is a finite group then $V(\mathbb{Z} G)$ and G have the same primary spectrum, i.e. for every prime and every positive integer G contains an element of order p^{n} if and only if so does $V(\mathbb{Z} G)$. In particular, the least common multiple of the orders of the torsion elements of $V(\mathbb{Z} G)$ is the exponent of G, i.e. the smallest positive integer e such that $g^{e}=1$ for every $g \in G$.
(13) Let G a finite group and let u be an element of prime order p in $V(\mathbb{Z} G)$. Prove that if all the elements of order p in G are conjugate then u is rationally conjugate to an element of G. Conclude that, in general, G is a subgroup of a group H such that u is conjugate in $\mathbb{Q} H$ to an element of G.
(14) Use the Luthar-Passi Method to prove that (ZP1) has a positive solution for S_{3}, A_{4}, S_{4} and A_{5}.
(15) Prove that the Luthar-Passi Method does not provide a positive answer to (ZP1) for A_{6}. (Hint: First prove that every torsion element of $V\left(\mathbb{Z} A_{6}\right)$ of order 2 or 3 is rationally conjugate to an element of A_{6} and then apply the Luthar-Passi Method to units of order 6.)

